标签:
对于二叉树来讲最主要、最基本的运算是遍历。
遍历二叉树 是指以一定的次序访问二叉树中的每个结点。所谓 访问结点 是指对结点进行各种操作的简称。例如,查询结点数据域的内容,或输出它的值,或找出结点位置,或是执行对结点的其他操作。遍历二叉树的过程实质是把二叉树的结点进行线性排列的过程。假设遍历二叉树时访问结点的操作就是输出结点数据域的值,那么遍历的结果得到一个线性序列。
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
(1)访问结点本身(N),
(2)遍历该结点的左子树(L),
(3)遍历该结点的右子树(R)。
NLR、LNR、LRN、NRL、RNL、RLN。
注意:
前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
public void preordernorec(TreeNode root){
//System.out.println("先序遍历(非递归):");
//用数组模拟栈,假设有节点个数不超过32个
TreeNode[] stack = new TreeNode[32];
for(int i =0;i<32;i++){
stack[i] = null;
}
int index =0;
TreeNode pnode = root;
while(pnode!=null||index>0){
while(pnode!=null){
System.out.print(pnode.getKey()+",");
stack[index++] = pnode;
pnode = pnode.getLeftchlid();
}
pnode = stack[--index];
pnode = pnode.getRightchild();
}
//System.out.println("");
}
public void preorder(TreeNode root){
if(root!=null){
System.out.print(root.getKey()+",");
preorder(root.getLeftchlid());
preorder(root.getRightchild());
}
}
public void inordernorec(TreeNode root){
TreeNode[] stack = new TreeNode[32];
int index=0;
for(int i =0;i<32;i++){
stack[i] = null;
}
TreeNode pnode = root;
while(pnode!=null||index>0){
while(pnode!=null){
stack[index++] = pnode;
pnode = pnode.getLeftchlid();
}
pnode = stack[--index];
System.out.print(pnode.getKey()+",");
pnode = pnode.getRightchild();
}
//System.out.println("");
}
public void inorder(TreeNode root){
if(root!=null){
inorder(root.getLeftchlid());
System.out.print(root.getKey()+",");
inorder(root.getRightchild());
}
}
public void postordernorec(TreeNode root){
TreeNode[] stack = new TreeNode[32];
int index=0;
for(int i =0;i<32;i++){
stack[i] = null;
}
TreeNode pnode = root;
TreeNode LastVisit = null;
while(pnode!=null||index>0){
while(pnode!=null){
stack[index++] = pnode;
pnode = pnode.getLeftchlid();
}
pnode=stack[index-1];
if(pnode.getRightchild()==null||pnode.getRightchild()==LastVisit){
System.out.print(pnode.getKey()+",");
LastVisit = pnode;
index--;
pnode = null;
}
else
{
pnode = pnode.getRightchild();
}
}
}
public void postorder(TreeNode root){
if(root!=null){
postorder(root.getLeftchlid());
postorder(root.getRightchild());
System.out.print(root.getKey()+",");
}
}
http://blog.csdn.net/wuwenxiang91322/article/details/12231657
http://blog.csdn.net/tanyujing/article/details/9381451
面试之路(11)-java递归和非递归二叉树前序中序后序遍历
标签:
原文地址:http://blog.csdn.net/lpjishu/article/details/51278763