标签:
文件读取中的NIO
在Java1.4之前的I/O系统中,提供的都是面向流的I/O系统,系统一次一个字节地处理数据,一个输入流产生一个字节的数据,一个输出流消费一个字节的数据,面向流的I/O速度非常慢,而在Java 1.4中推出了NIO,这是一个面向块的I/O系统,系统以块的方式处理处理,每一个操作在一步中产生或者消费一个数据库,按块处理要比按字节处理数据快的多。
在NIO中有几个核心对象需要掌握:缓冲区(Buffer)、通道(Channel)、选择器(Selector)。
缓冲区Buffer
缓冲区实际上是一个容器对象,更直接的说,其实就是一个数组,在NIO库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,它也是写入到缓冲区中的;任何时候访问 NIO 中的数据,都是将它放到缓冲区中。而在面向流I/O系统中,所有数据都是直接写入或者直接将数据读取到Stream对象中。
在NIO中,所有的缓冲区类型都继承于抽象类Buffer,最常用的就是ByteBuffer,对于Java中的基本类型,基本都有一个具体Buffer类型与之相对应,它们之间的继承关系如下图所示:
下面是一个简单的使用IntBuffer的例子:
- import java.nio.IntBuffer;
-
- public class TestIntBuffer {
- public static void main(String[] args) {
-
-
- IntBuffer buffer = IntBuffer.allocate(8);
-
- for (int i = 0; i < buffer.capacity(); ++i) {
- int j = 2 * (i + 1);
-
- buffer.put(j);
- }
-
-
- buffer.flip();
-
-
- while (buffer.hasRemaining()) {
-
- int j = buffer.get();
- System.out.print(j + " ");
- }
-
- }
-
- }
import java.nio.IntBuffer;
public class TestIntBuffer {
public static void main(String[] args) {
// 分配新的int缓冲区,参数为缓冲区容量
// 新缓冲区的当前位置将为零,其界限(限制位置)将为其容量。它将具有一个底层实现数组,其数组偏移量将为零。
IntBuffer buffer = IntBuffer.allocate(8);
for (int i = 0; i < buffer.capacity(); ++i) {
int j = 2 * (i + 1);
// 将给定整数写入此缓冲区的当前位置,当前位置递增
buffer.put(j);
}
// 重设此缓冲区,将限制设置为当前位置,然后将当前位置设置为0
buffer.flip();
// 查看在当前位置和限制位置之间是否有元素
while (buffer.hasRemaining()) {
// 读取此缓冲区当前位置的整数,然后当前位置递增
int j = buffer.get();
System.out.print(j + " ");
}
}
}
运行后可以看到:
通道Channel
通道是一个对象,通过它可以读取和写入数据,当然了所有数据都通过Buffer对象来处理。我们永远不会将字节直接写入通道中,相反是将数据写入包含一个或者多个字节的缓冲区。同样不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节。
在NIO中,提供了多种通道对象,而所有的通道对象都实现了Channel接口。它们之间的继承关系如下图所示:
使用NIO读取数据
在前面我们说过,任何时候读取数据,都不是直接从通道读取,而是从通道读取到缓冲区。所以使用NIO读取数据可以分为下面三个步骤:
1. 从FileInputStream获取Channel
2. 创建Buffer
3. 将数据从Channel读取到Buffer中
下面是一个简单的使用NIO从文件中读取数据的例子:
- import java.io.*;
- import java.nio.*;
- import java.nio.channels.*;
-
- public class Program {
- static public void main( String args[] ) throws Exception {
- FileInputStream fin = new FileInputStream("c:\\test.txt");
-
-
- FileChannel fc = fin.getChannel();
-
-
- ByteBuffer buffer = ByteBuffer.allocate(1024);
-
-
- fc.read(buffer);
-
- buffer.flip();
-
- while (buffer.remaining()>0) {
- byte b = buffer.get();
- System.out.print(((char)b));
- }
-
- fin.close();
- }
- }
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class Program {
static public void main( String args[] ) throws Exception {
FileInputStream fin = new FileInputStream("c:\\test.txt");
// 获取通道
FileChannel fc = fin.getChannel();
// 创建缓冲区
ByteBuffer buffer = ByteBuffer.allocate(1024);
// 读取数据到缓冲区
fc.read(buffer);
buffer.flip();
while (buffer.remaining()>0) {
byte b = buffer.get();
System.out.print(((char)b));
}
fin.close();
}
}
使用NIO写入数据
使用NIO写入数据与读取数据的过程类似,同样数据不是直接写入通道,而是写入缓冲区,可以分为下面三个步骤:
1. 从FileInputStream获取Channel
2. 创建Buffer
3. 将数据从Channel写入到Buffer中
下面是一个简单的使用NIO向文件中写入数据的例子:
- import java.io.*;
- import java.nio.*;
- import java.nio.channels.*;
-
- public class Program {
- static private final byte message[] = { 83, 111, 109, 101, 32,
- 98, 121, 116, 101, 115, 46 };
-
- static public void main( String args[] ) throws Exception {
- FileOutputStream fout = new FileOutputStream( "c:\\test.txt" );
-
- FileChannel fc = fout.getChannel();
-
- ByteBuffer buffer = ByteBuffer.allocate( 1024 );
-
- for (int i=0; i<message.length; ++i) {
- buffer.put( message[i] );
- }
-
- buffer.flip();
-
- fc.write( buffer );
-
- fout.close();
- }
- }
在第一篇中,我们介绍了NIO中的两个核心对象:缓冲区和通道,在谈到缓冲区时,我们说缓冲区对象本质上是一个数组,但它其实是一个特殊的数组,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况,如果我们使用get()方法从缓冲区获取数据或者使用put()方法把数据写入缓冲区,都会引起缓冲区状态的变化。本文为NIO使用及原理分析的第二篇,将会分析NIO中的Buffer对象。
在缓冲区中,最重要的属性有下面三个,它们一起合作完成对缓冲区内部状态的变化跟踪:
position:指定了下一个将要被写入或者读取的元素索引,它的值由get()/put()方法自动更新,在新创建一个Buffer对象时,position被初始化为0。
limit:指定还有多少数据需要取出(在从缓冲区写入通道时),或者还有多少空间可以放入数据(在从通道读入缓冲区时)。
capacity:指定了可以存储在缓冲区中的最大数据容量,实际上,它指定了底层数组的大小,或者至少是指定了准许我们使用的底层数组的容量。
以上四个属性值之间有一些相对大小的关系:0 <= position <= limit <= capacity。如果我们创建一个新的容量大小为10的ByteBuffer对象,在初始化的时候,position设置为0,limit和 capacity被设置为10,在以后使用ByteBuffer对象过程中,capacity的值不会再发生变化,而其它两个个将会随着使用而变化。四个属性值分别如图所示:
现在我们可以从通道中读取一些数据到缓冲区中,注意从通道读取数据,相当于往缓冲区中写入数据。如果读取4个自己的数据,则此时position的值为4,即下一个将要被写入的字节索引为4,而limit仍然是10,如下图所示:
下一步把读取的数据写入到输出通道中,相当于从缓冲区中读取数据,在此之前,必须调用flip()方法,该方法将会完成两件事情:
1. 把limit设置为当前的position值
2. 把position设置为0
由于position被设置为0,所以可以保证在下一步输出时读取到的是缓冲区中的第一个字节,而limit被设置为当前的position,可以保证读取的数据正好是之前写入到缓冲区中的数据,如下图所示:
现在调用get()方法从缓冲区中读取数据写入到输出通道,这会导致position的增加而limit保持不变,但position不会超过limit的值,所以在读取我们之前写入到缓冲区中的4个自己之后,position和limit的值都为4,如下图所示:
在从缓冲区中读取数据完毕后,limit的值仍然保持在我们调用flip()方法时的值,调用clear()方法能够把所有的状态变化设置为初始化时的值,如下图所示:
最后我们用一段代码来验证这个过程,如下所示:
- import java.io.*;
- import java.nio.*;
- import java.nio.channels.*;
-
- public class Program {
- public static void main(String args[]) throws Exception {
- FileInputStream fin = new FileInputStream("d:\\test.txt");
- FileChannel fc = fin.getChannel();
-
- ByteBuffer buffer = ByteBuffer.allocate(10);
- output("初始化", buffer);
-
- fc.read(buffer);
- output("调用read()", buffer);
-
- buffer.flip();
- output("调用flip()", buffer);
-
- while (buffer.remaining() > 0) {
- byte b = buffer.get();
-
- }
- output("调用get()", buffer);
-
- buffer.clear();
- output("调用clear()", buffer);
-
- fin.close();
- }
-
- public static void output(String step, Buffer buffer) {
- System.out.println(step + " : ");
- System.out.print("capacity: " + buffer.capacity() + ", ");
- System.out.print("position: " + buffer.position() + ", ");
- System.out.println("limit: " + buffer.limit());
- System.out.println();
- }
- }
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class Program {
public static void main(String args[]) throws Exception {
FileInputStream fin = new FileInputStream("d:\\test.txt");
FileChannel fc = fin.getChannel();
ByteBuffer buffer = ByteBuffer.allocate(10);
output("初始化", buffer);
fc.read(buffer);
output("调用read()", buffer);
buffer.flip();
output("调用flip()", buffer);
while (buffer.remaining() > 0) {
byte b = buffer.get();
// System.out.print(((char)b));
}
output("调用get()", buffer);
buffer.clear();
output("调用clear()", buffer);
fin.close();
}
public static void output(String step, Buffer buffer) {
System.out.println(step + " : ");
System.out.print("capacity: " + buffer.capacity() + ", ");
System.out.print("position: " + buffer.position() + ", ");
System.out.println("limit: " + buffer.limit());
System.out.println();
}
}
完成的输出结果为:
在上一篇文章中介绍了缓冲区内部对于状态变化的跟踪机制,而对于NIO中缓冲区来说,还有很多的内容值的学习,如缓冲区的分片与数据共享,只读缓冲区等。在本文中我们来看一下缓冲区一些更细节的内容。
缓冲区的分配
在前面的几个例子中,我们已经看过了,在创建一个缓冲区对象时,会调用静态方法allocate()来指定缓冲区的容量,其实调用 allocate()相当于创建了一个指定大小的数组,并把它包装为缓冲区对象。或者我们也可以直接将一个现有的数组,包装为缓冲区对象,如下示例代码所示:
- public class BufferWrap {
-
- public void myMethod()
- {
-
- ByteBuffer buffer1 = ByteBuffer.allocate(10);
-
-
- byte array[] = new byte[10];
- ByteBuffer buffer2 = ByteBuffer.wrap( array );
- }
- }
public class BufferWrap {
public void myMethod()
{
// 分配指定大小的缓冲区
ByteBuffer buffer1 = ByteBuffer.allocate(10);
// 包装一个现有的数组
byte array[] = new byte[10];
ByteBuffer buffer2 = ByteBuffer.wrap( array );
}
}
缓冲区分片
在NIO中,除了可以分配或者包装一个缓冲区对象外,还可以根据现有的缓冲区对象来创建一个子缓冲区,即在现有缓冲区上切出一片来作为一个新的缓冲区,但现有的缓冲区与创建的子缓冲区在底层数组层面上是数据共享的,也就是说,子缓冲区相当于是现有缓冲区的一个视图窗口。调用slice()方法可以创建一个子缓冲区,让我们通过例子来看一下:
- import java.nio.*;
-
- public class Program {
- static public void main( String args[] ) throws Exception {
- ByteBuffer buffer = ByteBuffer.allocate( 10 );
-
-
- for (int i=0; i<buffer.capacity(); ++i) {
- buffer.put( (byte)i );
- }
-
-
- buffer.position( 3 );
- buffer.limit( 7 );
- ByteBuffer slice = buffer.slice();
-
-
- for (int i=0; i<slice.capacity(); ++i) {
- byte b = slice.get( i );
- b *= 10;
- slice.put( i, b );
- }
-
- buffer.position( 0 );
- buffer.limit( buffer.capacity() );
-
- while (buffer.remaining()>0) {
- System.out.println( buffer.get() );
- }
- }
- }
import java.nio.*;
public class Program {
static public void main( String args[] ) throws Exception {
ByteBuffer buffer = ByteBuffer.allocate( 10 );
// 缓冲区中的数据0-9
for (int i=0; i<buffer.capacity(); ++i) {
buffer.put( (byte)i );
}
// 创建子缓冲区
buffer.position( 3 );
buffer.limit( 7 );
ByteBuffer slice = buffer.slice();
// 改变子缓冲区的内容
for (int i=0; i<slice.capacity(); ++i) {
byte b = slice.get( i );
b *= 10;
slice.put( i, b );
}
buffer.position( 0 );
buffer.limit( buffer.capacity() );
while (buffer.remaining()>0) {
System.out.println( buffer.get() );
}
}
}
在该示例中,分配了一个容量大小为10的缓冲区,并在其中放入了数据0-9,而在该缓冲区基础之上又创建了一个子缓冲区,并改变子缓冲区中的内容,从最后输出的结果来看,只有子缓冲区“可见的”那部分数据发生了变化,并且说明子缓冲区与原缓冲区是数据共享的,输出结果如下所示:
只读缓冲区
只读缓冲区非常简单,可以读取它们,但是不能向它们写入数据。可以通过调用缓冲区的asReadOnlyBuffer()方法,将任何常规缓冲区转 换为只读缓冲区,这个方法返回一个与原缓冲区完全相同的缓冲区,并与原缓冲区共享数据,只不过它是只读的。如果原缓冲区的内容发生了变化,只读缓冲区的内容也随之发生变化:
- import java.nio.*;
-
- public class Program {
- static public void main( String args[] ) throws Exception {
- ByteBuffer buffer = ByteBuffer.allocate( 10 );
-
-
- for (int i=0; i<buffer.capacity(); ++i) {
- buffer.put( (byte)i );
- }
-
-
- ByteBuffer readonly = buffer.asReadOnlyBuffer();
-
-
- for (int i=0; i<buffer.capacity(); ++i) {
- byte b = buffer.get( i );
- b *= 10;
- buffer.put( i, b );
- }
-
- readonly.position(0);
- readonly.limit(buffer.capacity());
-
-
- while (readonly.remaining()>0) {
- System.out.println( readonly.get());
- }
- }
- }
import java.nio.*;
public class Program {
static public void main( String args[] ) throws Exception {
ByteBuffer buffer = ByteBuffer.allocate( 10 );
// 缓冲区中的数据0-9
for (int i=0; i<buffer.capacity(); ++i) {
buffer.put( (byte)i );
}
// 创建只读缓冲区
ByteBuffer readonly = buffer.asReadOnlyBuffer();
// 改变原缓冲区的内容
for (int i=0; i<buffer.capacity(); ++i) {
byte b = buffer.get( i );
b *= 10;
buffer.put( i, b );
}
readonly.position(0);
readonly.limit(buffer.capacity());
// 只读缓冲区的内容也随之改变
while (readonly.remaining()>0) {
System.out.println( readonly.get());
}
}
}
如果尝试修改只读缓冲区的内容,则会报ReadOnlyBufferException异常。只读缓冲区对于保护数据很有用。在将缓冲区传递给某个 对象的方法时,无法知道这个方法是否会修改缓冲区中的数据。创建一个只读的缓冲区可以保证该缓冲区不会被修改。只可以把常规缓冲区转换为只读缓冲区,而不能将只读的缓冲区转换为可写的缓冲区。
直接缓冲区
直接缓冲区是为加快I/O速度,使用一种特殊方式为其分配内存的缓冲区,JDK文档中的描述为:给定一个直接字节缓冲区,Java虚拟机将尽最大努 力直接对它执行本机I/O操作。也就是说,它会在每一次调用底层操作系统的本机I/O操作之前(或之后),尝试避免将缓冲区的内容拷贝到一个中间缓冲区中 或者从一个中间缓冲区中拷贝数据。要分配直接缓冲区,需要调用allocateDirect()方法,而不是allocate()方法,使用方式与普通缓冲区并无区别,如下面的拷贝文件示例:
- import java.io.*;
- import java.nio.*;
- import java.nio.channels.*;
-
- public class Program {
- static public void main( String args[] ) throws Exception {
- String infile = "c:\\test.txt";
- FileInputStream fin = new FileInputStream( infile );
- FileChannel fcin = fin.getChannel();
-
- String outfile = String.format("c:\\testcopy.txt");
- FileOutputStream fout = new FileOutputStream( outfile );
- FileChannel fcout = fout.getChannel();
-
-
- ByteBuffer buffer = ByteBuffer.allocateDirect( 1024 );
-
- while (true) {
- buffer.clear();
-
- int r = fcin.read( buffer );
-
- if (r==-1) {
- break;
- }
-
- buffer.flip();
-
- fcout.write( buffer );
- }
- }
- }
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class Program {
static public void main( String args[] ) throws Exception {
String infile = "c:\\test.txt";
FileInputStream fin = new FileInputStream( infile );
FileChannel fcin = fin.getChannel();
String outfile = String.format("c:\\testcopy.txt");
FileOutputStream fout = new FileOutputStream( outfile );
FileChannel fcout = fout.getChannel();
// 使用allocateDirect,而不是allocate
ByteBuffer buffer = ByteBuffer.allocateDirect( 1024 );
while (true) {
buffer.clear();
int r = fcin.read( buffer );
if (r==-1) {
break;
}
buffer.flip();
fcout.write( buffer );
}
}
}
内存映射文件I/O
内存映射文件I/O是一种读和写文件数据的方法,它可以比常规的基于流或者基于通道的I/O快的多。内存映射文件I/O是通过使文件中的数据出现为 内存数组的内容来完成的,这其初听起来似乎不过就是将整个文件读到内存中,但是事实上并不是这样。一般来说,只有文件中实际读取或者写入的部分才会映射到内存中。如下面的示例代码:
- import java.io.*;
- import java.nio.*;
- import java.nio.channels.*;
-
- public class Program {
- static private final int start = 0;<span style="font-family:FangSong_GB2312;font-size:13px;">
- static private final int size = 1024;
-
- static public void main( String args[] ) throws Exception {
- RandomAccessFile raf = new RandomAccessFile( "c:\\test.txt", "rw" );
- FileChannel fc = raf.getChannel();
-
- MappedByteBuffer mbb = fc.map( FileChannel.MapMode.READ_WRITE,
- start, size );
-
- mbb.put( 0, (byte)97 );
- mbb.put( 1023, (byte)122 );
-
- raf.close();
- }
- }</span>
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class Program {
static private final int start = 0;<span style="font-family:FangSong_GB2312;font-size:13px;">
static private final int size = 1024;
static public void main( String args[] ) throws Exception {
RandomAccessFile raf = new RandomAccessFile( "c:\\test.txt", "rw" );
FileChannel fc = raf.getChannel();
MappedByteBuffer mbb = fc.map( FileChannel.MapMode.READ_WRITE,
start, size );
mbb.put( 0, (byte)97 );
mbb.put( 1023, (byte)122 );
raf.close();
}
}</span>
关于缓冲区的细节内容,我们已经用了两篇文章来介绍。在下一篇中将会介绍NIO中更有趣的部分Nonblocking I/O。
网络传输中的NIO
Java NIO是在jdk1.4开始使用的,它既可以说成“新IO”,也可以说成非阻塞式I/O。下面是java NIO的工作原理:
-
由一个专门的线程来处理所有的IO事件,并负责分发。
-
事件驱动机制:事件到的时候触发,而不是同步的去监视事件。
-
线程通讯:线程之间通过wait,notify等方式通讯。保证每次上下文切换都是有意义的。减少无谓的线程切换。(//核心所在)
阅读过一些资料之后,下面贴出我理解的java NIO的工作原理图:
注:每个线程的处理流程大概都是读取数据,解码,计算处理,编码,发送响应。
Java NIO的服务端只需启动一个专门的线程来处理所有的IO事件,这种通信模型是怎么实现的呢?呵呵,我们一起来探究它的奥秘吧。java NIO采用了双向通道(channel)进行数据传输,而不是单向流(stream),在通道上可以注册我们感兴趣的事件。一共有以下四种事件:
事件名 |
对应值 |
服务端接收客户端连接事件 |
SelectionKey.OP_ACCEPT(16) |
客户端连接服务端事件 |
SelectionKey.OP_CONNECT(8) |
读事件 |
SelectionKey.OP_READ(1) |
写事件 |
SelectionKey.OP_WRITE(4) |
服务端和客户端各自维护一个管理通道的对象,我们称之为selector,该对象能检测一个或多个通道(channel)上的事件。我们以服务端为例,如果服务端的selector上注册了读事件,某时刻客户端给服务端送了一些数据,阻塞I/O这时会调用read()方法阻塞地读取数据,而NIO的服务端会在selector中添加一个读事件。服务端的处理线程会轮询地访问selector,如果访问selector时发现有感兴趣的事件到达,则处理这些事件,如果没有感兴趣的事件到达,则处理线程会一直阻塞直到感兴趣的事件到达为止。下面是我理解的java
NIO的通信模型示意图:
为了更好地理解java NIO,下面贴出服务端和客户端的简单代码实现:
服务端:
客户端:
Java核心知识点-NIO
标签:
原文地址:http://blog.csdn.net/u013782203/article/details/51289842