码迷,mamicode.com
首页 > 编程语言 > 详细

【图像算法】图像特征:GLCM灰度共生矩阵,纹理特征

时间:2016-05-04 20:54:20      阅读:270      评论:0      收藏:0      [点我收藏+]

标签:

【图像算法】图像特征:GLCM

      SkySeraph Aug 27th 2011  HQU

Email:zgzhaobo@gmail.com    QQ:452728574

Latest Modified Date:Aug 27th 2011 HQU

-------------------------------------------------------------------------------------------------------------------------------

一 原理

1 概念:GLCM,即灰度共生矩阵,GLCM是一个L*L方阵,L为源图像的灰度级

2 含义:描述的是具有某种空间位置关系的两个像素的联合分布,可看成两个像素灰度对的联合直方图,是一种二阶统计

3 常用的空间位置关系:有四种,垂直、水平、正负45°

4 常用的GLCM特征特征:

(1)能量:  是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。
      如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。
      当共生矩阵中元素集中分布时,此时ASM值大。ASM值大表明一种较均一和规则变化的纹理模式。
(2)对比度:反映了图像的清晰度和纹理沟纹深浅的程度。纹理沟纹越深,其对比度越大,视觉效果越清晰;
      反之,对比度小,则沟纹浅,效果模糊。灰度差即对比度大的象素对越多,这个值越大。
      灰度公生矩阵中远离对角线的元素值越大,CON越大。
(3)相关:  它度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。
      当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。如果图像中有水平方向纹理,
      则水平方向矩阵的COR大于其余矩阵的COR值。
(4)熵:  是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、
      空间共生矩阵中所有值几乎相等时,共生矩阵中元素分散分布时,熵较大。它表示了图像中纹理的非均匀程度或复杂程度。
(5)逆差距:反映图像纹理的同质性,度量图像纹理局部变化的多少。其值大则说明图像纹理的不同区域间缺少变化,局部非常均匀。

5 原理理解:

假设衣服图像的纹理矩阵P如下:

P = [ 0 1 2 0 1 2 
   1 2 0 1 2 0
   2 0 1 2 0 1
   0 1 2 0 1 2
   1 2 0 1 2 0
   2 0 1 2 0 1
 ]

①相距为1(第一个参数),位置方向为0°第二个参数)的GLCM矩阵如下:

[ 0 10 10  

  10 0 10 

  10 10 0  

]

//解析:因为P中灰度级为3,故GLCM为3*3方阵

 

②相距为1(第一个参数),位置方向为正负45°第二个参数)的GLCM矩阵如下:

 

 [ 16  0  0
    0  16  0 
    0   0  18
]

 

-------------------------------------------------------------------------------------------------------------------------------

二 结果

 图像(lenna):

另附:关于lenna,风靡图像界这张图像,源原轶事:http://www.cs.cmu.edu/~chuck/lennapg/ ^_^

技术分享

单个 GLCM以及4个方向的均值、方差GLCM特征:

 

技术分享

 

-------------------------------------------------------------------------------------------------------------------------------

三 源码

类头文件:

 

// FeatureDetect.h: interface for the FeatureDetect class. 
//
///////////////////////////////////////////////////////////////////////////////////////
/* Author: skyseraph/zhaobo   2011/4    zgzhaobo@gmal.com
*/
///////////////////////////////////////////////////////////////////////////////////////

#include <math.h>    
#include "windows.h"
#include "iostream"
usingnamespace std;

typedef struct glcmFeature 
{
double    dCorrelation;        
double    dEnergy;            
double    dEntropy;            
double    dInertiaQuadrature;    
double    dLocalCalm;                
}glcmFeature;

typedef struct glcmFeatureVar 
{
double    dAveCorrelation;    
double    dAveEnergy;    
double    dAveEntropy;    
double    dAveInertiaQuadrature;
double    dAveLocalCalm;    
double    dVarCorrelation;    
double    dVarEnergy;        
double    dVarEntropy;        
double    dVarInertiaQuadrature;
double    dVarLocalCalm;        
}glcmFeatureVar;

class ZBGLCM
{
public:    
    ZBGLCM();    
~ZBGLCM();
    
void ComputeMatrix(BYTE **LocalImage, int LocalImageWidth);      
void ComputeFeature(double&FeatureEnergy, double&FeatureEntropy, 
double&FeatureInertiaQuadrature, double&FeatureCorrelation, 
double&FeatureLocalCalm, int** pMatrix, int dim);
    glcmFeature pGLCMF;
    glcmFeatureVar pGLCMFVar;
    glcmFeature GLCMFeature(BYTE* ImageArray,long ImageWidth,long ImageHeight,int FilterWindowWidth,int dir);    
    glcmFeatureVar GLCMFeatureVar(BYTE* ImageArray,long ImageWidth,long ImageHeight,int FilterWindowWidth);
    

public:    
double FeatureLocalCalmRD;    
double FeatureLocalCalmLD;    
double FeatureLocalCalmV;    
double FeatureLocalCalmH;
double FeatureCorrelationRD;
double FeatureCorrelationLD;
double FeatureCorrelationV;    
double FeatureCorrelationH;    
double FeatureInertiaQuadratureRD;
double FeatureInertiaQuadratureLD;
double FeatureInertiaQuadratureV;
double FeatureInertiaQuadratureH;
double FeatureEntropyRD;
double FeatureEntropyLD;
double FeatureEntropyV;    
double FeatureEntropyH;    
double FeatureEnergyRD;    
double FeatureEnergyLD;    
double FeatureEnergyV;    
double FeatureEnergyH;    

int FilterWindowWidth;    
int distance;    
int GrayLayerNum;
int L;                
int** PMatrixRD;
int** PMatrixLD;    
int** PMatrixV;    
int** PMatrixH;    
};

 

类源文件-1:初始化和资源释放

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
ZBGLCM::ZBGLCM()
{    
    PMatrixRD = NULL;    
    PMatrixLD = NULL;
    PMatrixV = NULL;
    PMatrixH = NULL;    
    
    distance =5;
    FilterWindowWidth =16;
    GrayLayerNum =8; 
    L=8;

int i;
    PMatrixH =newint*[GrayLayerNum];
    PMatrixLD=newint*[GrayLayerNum];
    PMatrixRD=newint*[GrayLayerNum];
    PMatrixV =newint*[GrayLayerNum];
    
for(i=0; i<GrayLayerNum; i++)
    {
        PMatrixH[i] =newint[GrayLayerNum];
        PMatrixLD[i]=newint[GrayLayerNum];
        PMatrixRD[i]=newint[GrayLayerNum];
        PMatrixV[i] =newint[GrayLayerNum];        
    }
}

ZBGLCM::~ZBGLCM()
{
if(PMatrixH !=NULL)
    {        
for(int i=0; i<GrayLayerNum; i++)
        {
            delete [] PMatrixH[i];
            PMatrixH[i] = NULL; //已析构了,后不再加
        }
        delete [] PMatrixH;
        PMatrixH = NULL;
    }
if(PMatrixLD !=NULL)
    {
for(int i=0; i<GrayLayerNum; i++)
        {
            delete[] PMatrixLD[i];
        }
        delete [] PMatrixLD;
    }
if(PMatrixRD !=NULL)
    {
for(int i=0; i<GrayLayerNum; i++)
            delete [] PMatrixRD[i];
        delete [] PMatrixRD;
    }
if(PMatrixV !=NULL)
    {
for(int i=0; i<GrayLayerNum; i++)
            delete [] PMatrixV[i];
        delete [] PMatrixV;
    }    
}

 

 

类源文件-2:计算纹理特征

void ZBGLCM::ComputeFeature(double&FeatureEnergy, double&FeatureEntropy, 
double&FeatureInertiaQuadrature, double&FeatureCorrelation, 
double&FeatureLocalCalm, int** pMatrix, int dim)
{
int i,j;
double**pdMatrix;
    pdMatrix =newdouble*[dim];
for(i=0; i<dim; i++)
        pdMatrix[i] =newdouble[dim];
    
int total =0;
for(i=0; i<dim; i++)
    {
for(j=0; j<dim; j++)
        {
            total += pMatrix[i][j];
        }
    }
for(i=0; i<dim; i++)
    {
for(j=0; j<dim; j++)
        {
            pdMatrix[i][j] = (double)pMatrix[i][j]/(double)total;
        }
    }
    
    FeatureEnergy =0.0;
    FeatureEntropy =0.0;
    FeatureInertiaQuadrature =0.0;
    FeatureLocalCalm =0.0;

for(i=0; i<dim; i++)
    {
for(j=0; j<dim; j++)
        {
            FeatureEnergy += pdMatrix[i][j]*pdMatrix[i][j];            
if(pdMatrix[i][j]>1e-12)
            {
                FeatureEntropy -= pdMatrix[i][j]*log(pdMatrix[i][j]);
            }            
            FeatureInertiaQuadrature += (double)(i-j)*(double)(i-j)*pdMatrix[i][j];
            FeatureLocalCalm += pdMatrix[i][j]/(1+(double)(i-j)*(double)(i-j));
        }
    }
    
double ux =0.0;
double localtotal =0.0;
for(i=0; i<dim; i++)
    {
        localtotal =0.0;
for(j=0; j<dim; j++)
        {
            localtotal += pdMatrix[i][j];
        }
        ux += (double)i * localtotal;
    }
    
double uy =0.0;
for(j=0; j<dim; j++)
    {
        localtotal =0.0;
for(i=0; i<dim; i++)
        {
            localtotal += pdMatrix[i][j];
        }
        uy += (double)j * localtotal;
    }
    
double sigmax =0.0;
for(i=0; i<dim; i++)
    {
        localtotal =0.0;
for(j=0; j<dim; j++)
        {
            localtotal += pdMatrix[i][j];
        }
        sigmax += (double)(i-ux) * (double)(i-ux) * localtotal;
    }
    
double sigmay =0.0;
for(j=0; j<dim; j++)
    {
        localtotal =0.0;
for(i=0; i<dim; i++)
        {
            localtotal += pdMatrix[i][j];
        }
        sigmay += (double)(j-uy) * (double)(j-uy) * localtotal;
    }
    
    FeatureCorrelation =0.0;
for(i=0; i<dim; i++)
    {
for(j=0; j<dim; j++)
        {
            FeatureCorrelation += (double)(i-ux) * (double)(j-uy) * pdMatrix[i][j];
        }
    }
if(sigmax !=0&& sigmay !=0)
    {
        FeatureCorrelation /= sigmax;
        FeatureCorrelation /= sigmay;
    }
else
        FeatureCorrelation =8;

if(pdMatrix !=NULL)
    {
for(i=0; i<dim; i++)
        {
            delete [] pdMatrix[i];
            pdMatrix[i] = NULL;
        }
        delete [] pdMatrix;
        pdMatrix = NULL;
    }
}

 

 

类源文件-3:计算共生矩阵

void ZBGLCM::ComputeMatrix(BYTE **LocalImage, int LocalImageWidth)
{
int i,j;
    
    BYTE **NewImage;
    NewImage =new BYTE*[LocalImageWidth];
if(NewImage==NULL)
return;
for(i=0; i<LocalImageWidth; i++)
    {
        NewImage[i] =new BYTE[LocalImageWidth];
if(NewImage[i]==NULL)
return;
    }
    
    
for(i=0; i<LocalImageWidth; i++)
    {
for(j=0; j<LocalImageWidth; j++)
        {            
            NewImage[i][j] = LocalImage[i][j] / (256/GrayLayerNum);
        }
    }

for(i=0; i<GrayLayerNum; i++)
    {        
for(j=0; j<GrayLayerNum; j++)
        {
            PMatrixH[i][j]  =0;
            PMatrixLD[i][j] =0;
            PMatrixRD[i][j] =0;
            PMatrixV[i][j]  =0;
        }
    }
    
for(i=0; i<LocalImageWidth; i++)
    {
for(j=0; j<LocalImageWidth-distance; j++)
        {
            PMatrixH[(unsigned int)NewImage[i][j]][(unsigned int)NewImage[i][j+distance]] +=1;
            PMatrixH[(unsigned int)NewImage[i][j+distance]][(unsigned int)NewImage[i][j]] +=1;
        }
    }

for(i=0; i<LocalImageWidth-distance; i++)
    {
for(j=0; j<LocalImageWidth; j++)
        {
            PMatrixV[(unsigned int)NewImage[i][j]][(unsigned int)NewImage[i+distance][j]] +=1;
            PMatrixV[(unsigned int)NewImage[i+distance][j]][(unsigned int)NewImage[i][j]] +=1;
        }
    }

for(i=0; i<LocalImageWidth-distance; i++)
    {
for(j=0; j<LocalImageWidth-distance; j++)
        {
int newi, newj;
            newi = i+distance;
            newj = j+distance;
            PMatrixLD[(unsigned int)NewImage[i][j]][(unsigned int)NewImage[newi][newj]] +=1;
            PMatrixLD[(unsigned int)NewImage[newi][newj]][(unsigned int)NewImage[i][j]] +=1;
        }
    }

for(i=distance; i<LocalImageWidth; i++)
    {
for(j=0; j<LocalImageWidth-distance; j++)
        {
int newi, newj;
            newi = i-distance;
            newj = j+distance;
            PMatrixRD[(unsigned int)NewImage[i][j]][(unsigned int)NewImage[newi][newj]] +=1;
            PMatrixRD[(unsigned int)NewImage[newi][newj]][(unsigned int)NewImage[i][j]] +=1;
        }
    }

if(NewImage !=NULL)
    {
for(i=0; i<LocalImageWidth; i++)
        {
            delete [] NewImage[i];
            NewImage[i] = NULL;
        }
        delete [] NewImage;
        NewImage = NULL;
    }
}

 

 

 类源文件-4:计算GLCM特征 

glcmFeature ZBGLCM::GLCMFeature(BYTE* ImageArray,long ImageWidth,long ImageHeight,int FilterWindowWidth,int dir)
{
    assert(ImageHeight>FilterWindowWidth && ImageWidth > FilterWindowWidth);

double dEnergy              =0.0;
double dEntropy              =0.0;
double dInertiaQuadrature =0.0;
double dLocalCalm          =0.0;
double dCorrelation          =0.0;
double dEnergy1              =0.0;
double dEntropy1          =0.0;
double dInertiaQuadrature1=0.0;
double dLocalCalm1          =0.0;
double dCorrelation1      =0.0;    
    
int rolltimeH = ImageHeight/FilterWindowWidth;
int rolltimeW = ImageWidth /FilterWindowWidth;
int i,j;
int p,q;
    
    unsigned char** arLocalImage;    
    arLocalImage=(unsigned char**)calloc((unsigned)FilterWindowWidth,sizeof(unsigned char*));
for( i=0;i<FilterWindowWidth;i++) 
    {
        arLocalImage[i]=(unsigned char*)calloc((unsigned)FilterWindowWidth,sizeof(unsigned char));
    }
        
for(i=0; i< rolltimeH; i++)
    {
for(j=0; j<rolltimeW; j++)
        {
for(p=0; p<FilterWindowWidth; p++)
            {
for(q=0; q<FilterWindowWidth; q++)
                {
                    arLocalImage[p][q] =*((char*)ImageArray+(ImageHeight-1-(i*FilterWindowWidth+p))*ImageWidth+j*FilterWindowWidth+q);
                }
            }
            ComputeMatrix(arLocalImage, FilterWindowWidth);
switch (dir)
            {
case0:
                ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixH, GrayLayerNum);
break;
case1:
                ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixRD, GrayLayerNum);
break;
case2:
                ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixV, GrayLayerNum);
break;
case3:
                ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixLD, GrayLayerNum);
break;
default:
                ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixH, GrayLayerNum);
break;
            }            
            dEnergy              += dEnergy1;
            dEntropy             += dEntropy1;
            dInertiaQuadrature   += dInertiaQuadrature1;
            dCorrelation         += dCorrelation1;
            dLocalCalm           += dLocalCalm1;        
        }
    }
    dEnergy              /= (rolltimeH*rolltimeW);
    dEntropy             /= (rolltimeH*rolltimeW);
    dInertiaQuadrature   /= (rolltimeH*rolltimeW);
    dCorrelation         /= (rolltimeH*rolltimeW);
    dLocalCalm           /= (rolltimeH*rolltimeW);
    
    pGLCMF.dEnergy = dEnergy ;
    pGLCMF.dEntropy = dEntropy;
    pGLCMF.dInertiaQuadrature = dInertiaQuadrature;
    pGLCMF.dCorrelation = dCorrelation;
    pGLCMF.dLocalCalm = dLocalCalm;

for(i=0; i<FilterWindowWidth; i++)
    {
        free(arLocalImage[i]) ;
        arLocalImage[i] = NULL;
    }
    free(arLocalImage);
    arLocalImage = NULL;


return pGLCMF;
}

 

 

类源文件-5:计算GLCM特征均值和方差 

 

glcmFeatureVar ZBGLCM::GLCMFeatureVar(BYTE* ImageArray,long ImageWidth,long ImageHeight,int FilterWindowWidth)
{
    assert(ImageHeight>FilterWindowWidth && ImageWidth > FilterWindowWidth);

double dEnergy              =0.0;
double dEntropy              =0.0;
double dInertiaQuadrature =0.0;
double dLocalCalm          =0.0;
double dCorrelation          =0.0;

double dEnergy1              =0.0;
double dEntropy1          =0.0;
double dInertiaQuadrature1=0.0;
double dLocalCalm1          =0.0;
double dCorrelation1      =0.0;

double dEnergy2              =0.0;
double dEntropy2          =0.0;
double dInertiaQuadrature2=0.0;
double dLocalCalm2          =0.0;
double dCorrelation2      =0.0;

double dEnergy3              =0.0;
double dEntropy3          =0.0;
double dInertiaQuadrature3=0.0;
double dLocalCalm3          =0.0;
double dCorrelation3      =0.0;    

double dEnergy4              =0.0;
double dEntropy4          =0.0;
double dInertiaQuadrature4=0.0;
double dLocalCalm4          =0.0;
double dCorrelation4      =0.0;

double dEnergy11              =0.0;
double dEntropy11          =0.0;
double dInertiaQuadrature11=0.0;
double dLocalCalm11          =0.0;
double dCorrelation11      =0.0;

double dEnergy22              =0.0;
double dEntropy22          =0.0;
double dInertiaQuadrature22=0.0;
double dLocalCalm22          =0.0;
double dCorrelation22      =0.0;

double dEnergy33              =0.0;
double dEntropy33          =0.0;
double dInertiaQuadrature33=0.0;
double dLocalCalm33          =0.0;
double dCorrelation33      =0.0;

double dEnergy44              =0.0;
double dEntropy44          =0.0;
double dInertiaQuadrature44=0.0;
double dLocalCalm44          =0.0;
double dCorrelation44      =0.0;

int rolltimeH = ImageHeight/FilterWindowWidth;
int rolltimeW = ImageWidth /FilterWindowWidth;
int i,j;
int p,q;

    unsigned char** arLocalImage;    
    arLocalImage=(unsigned char**)calloc((unsigned)FilterWindowWidth,sizeof(unsigned char*));
for( i=0;i<FilterWindowWidth;i++) 
    {
        arLocalImage[i]=(unsigned char*)calloc((unsigned)FilterWindowWidth,sizeof(unsigned char));
    }

for(i=0; i< rolltimeH; i++)
    {
for(j=0; j<rolltimeW; j++)
        {
for(p=0; p<FilterWindowWidth; p++)
            {
for(q=0; q<FilterWindowWidth; q++)
                {
                    arLocalImage[p][q] =*((char*)ImageArray+(ImageHeight-1-(i*FilterWindowWidth+p))*ImageWidth+j*FilterWindowWidth+q);
                }
            }            
            ComputeMatrix(arLocalImage, FilterWindowWidth);
            ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixH, GrayLayerNum);
            dEnergy              += dEnergy1;
            dEntropy             += dEntropy1;
            dInertiaQuadrature   += dInertiaQuadrature1;
            dCorrelation         += dCorrelation1;
            dLocalCalm           += dLocalCalm1;
            dEnergy11              += dEnergy1;
            dEntropy11             += dEntropy1;
            dInertiaQuadrature11   += dInertiaQuadrature1;
            dCorrelation11         += dCorrelation1;
            dLocalCalm11           += dLocalCalm1;
            ComputeMatrix(arLocalImage, FilterWindowWidth);
            ComputeFeature(dEnergy2, dEntropy2, dInertiaQuadrature2, dCorrelation2, dLocalCalm2, PMatrixRD, GrayLayerNum);
            dEnergy              += dEnergy2;
            dEntropy             += dEntropy2;
            dInertiaQuadrature   += dInertiaQuadrature2;
            dCorrelation         += dCorrelation2;
            dLocalCalm           += dLocalCalm2;
            dEnergy22              += dEnergy2;
            dEntropy22             += dEntropy2;
            dInertiaQuadrature22   += dInertiaQuadrature2;
            dCorrelation22         += dCorrelation2;
            dLocalCalm22           += dLocalCalm2;
            ComputeMatrix(arLocalImage, FilterWindowWidth);
            ComputeFeature(dEnergy3, dEntropy3, dInertiaQuadrature3, dCorrelation3, dLocalCalm3, PMatrixV, GrayLayerNum);
            dEnergy              += dEnergy3;
            dEntropy             += dEntropy3;
            dInertiaQuadrature   += dInertiaQuadrature3;
            dCorrelation         += dCorrelation3;
            dLocalCalm           += dLocalCalm3;
            dEnergy33              += dEnergy3;
            dEntropy33             += dEntropy3;
            dInertiaQuadrature33   += dInertiaQuadrature3;
            dCorrelation33         += dCorrelation3;
            dLocalCalm33           += dLocalCalm3;
            ComputeMatrix(arLocalImage, FilterWindowWidth);
            ComputeFeature(dEnergy4, dEntropy4, dInertiaQuadrature4, dCorrelation4, dLocalCalm4, PMatrixLD, GrayLayerNum);
            dEnergy              += dEnergy4;
            dEntropy             += dEntropy4;
            dInertiaQuadrature   += dInertiaQuadrature4;
            dCorrelation         += dCorrelation4;
            dLocalCalm           += dLocalCalm4;
            dEnergy44              += dEnergy4;
            dEntropy44             += dEntropy4;
            dInertiaQuadrature44   += dInertiaQuadrature4;
            dCorrelation44         += dCorrelation4;
            dLocalCalm44           += dLocalCalm4;        
                    
        }
    }
    dEnergy              /= (rolltimeH*rolltimeW);
    dEntropy             /= (rolltimeH*rolltimeW);
    dInertiaQuadrature   /= (rolltimeH*rolltimeW);
    dCorrelation         /= (rolltimeH*rolltimeW);
    dLocalCalm           /= (rolltimeH*rolltimeW);

    dEnergy11              /= (rolltimeH*rolltimeW);
    dEntropy11             /= (rolltimeH*rolltimeW);
    dInertiaQuadrature11   /= (rolltimeH*rolltimeW);
    dCorrelation11         /= (rolltimeH*rolltimeW);
    dLocalCalm11           /= (rolltimeH*rolltimeW);

    dEnergy22              /= (rolltimeH*rolltimeW);
    dEntropy22             /= (rolltimeH*rolltimeW);
    dInertiaQuadrature22   /= (rolltimeH*rolltimeW);
    dCorrelation22         /= (rolltimeH*rolltimeW);
    dLocalCalm22           /= (rolltimeH*rolltimeW);

    dEnergy33              /= (rolltimeH*rolltimeW);
    dEntropy33             /= (rolltimeH*rolltimeW);
    dInertiaQuadrature33   /= (rolltimeH*rolltimeW);
    dCorrelation33         /= (rolltimeH*rolltimeW);
    dLocalCalm33           /= (rolltimeH*rolltimeW);

    dEnergy44              /= (rolltimeH*rolltimeW);
    dEntropy44             /= (rolltimeH*rolltimeW);
    dInertiaQuadrature44   /= (rolltimeH*rolltimeW);
    dCorrelation44         /= (rolltimeH*rolltimeW);
    dLocalCalm44           /= (rolltimeH*rolltimeW);

    pGLCMFVar.dAveEnergy = dEnergy/4 ;
    pGLCMFVar.dAveEntropy = dEntropy/4;
    pGLCMFVar.dAveInertiaQuadrature = dInertiaQuadrature/4;
    pGLCMFVar.dAveCorrelation = dCorrelation/4;
    pGLCMFVar.dAveLocalCalm = dLocalCalm/4;

    pGLCMFVar.dVarEnergy=((dEnergy11-pGLCMFVar.dAveEnergy)*(dEnergy11-pGLCMFVar.dAveEnergy)
+(dEnergy22-pGLCMFVar.dAveEnergy)*(dEnergy22-pGLCMFVar.dAveEnergy)
+(dEnergy33-pGLCMFVar.dAveEnergy)*(dEnergy33-pGLCMFVar.dAveEnergy)
+(dEnergy44-pGLCMFVar.dAveEnergy)*(dEnergy44-pGLCMFVar.dAveEnergy))/4;
    pGLCMFVar.dVarEntropy=((dEntropy11-pGLCMFVar.dAveEntropy)*(dEntropy11-pGLCMFVar.dAveEntropy)
+(dEntropy22-pGLCMFVar.dAveEntropy)*(dEntropy22-pGLCMFVar.dAveEntropy)
+(dEntropy33-pGLCMFVar.dAveEntropy)*(dEntropy33-pGLCMFVar.dAveEntropy)
+(dEntropy44-pGLCMFVar.dAveEntropy)*(dEntropy44-pGLCMFVar.dAveEntropy))/4;
    pGLCMFVar.dVarInertiaQuadrature=((dInertiaQuadrature11-pGLCMFVar.dAveInertiaQuadrature)*(dInertiaQuadrature11-pGLCMFVar.dAveInertiaQuadrature)
+(dInertiaQuadrature22-pGLCMFVar.dAveInertiaQuadrature)*(dInertiaQuadrature22-pGLCMFVar.dAveInertiaQuadrature)
+(dInertiaQuadrature33-pGLCMFVar.dAveInertiaQuadrature)*(dInertiaQuadrature33-pGLCMFVar.dAveInertiaQuadrature)
+(dInertiaQuadrature44-pGLCMFVar.dAveInertiaQuadrature)*(dInertiaQuadrature44-pGLCMFVar.dAveInertiaQuadrature))/4;
    pGLCMFVar.dVarCorrelation=((dCorrelation11-pGLCMFVar.dAveCorrelation)*(dCorrelation11-pGLCMFVar.dAveCorrelation)
+(dCorrelation22-pGLCMFVar.dAveCorrelation)*(dCorrelation22-pGLCMFVar.dAveCorrelation)
+(dCorrelation33-pGLCMFVar.dAveCorrelation)*(dCorrelation33-pGLCMFVar.dAveCorrelation)
+(dCorrelation44-pGLCMFVar.dAveCorrelation)*(dCorrelation44-pGLCMFVar.dAveCorrelation))/4;
    pGLCMFVar.dVarLocalCalm=((dLocalCalm11-pGLCMFVar.dAveLocalCalm)*(dLocalCalm11-pGLCMFVar.dAveLocalCalm)
+(dLocalCalm22-pGLCMFVar.dAveLocalCalm)*(dLocalCalm22-pGLCMFVar.dAveLocalCalm)
+(dLocalCalm33-pGLCMFVar.dAveLocalCalm)*(dLocalCalm33-pGLCMFVar.dAveLocalCalm)
+(dLocalCalm44-pGLCMFVar.dAveLocalCalm)*(dLocalCalm44-pGLCMFVar.dAveLocalCalm))/4;


for(i=0; i<FilterWindowWidth; i++)
    {
        free(arLocalImage[i]) ;
        arLocalImage[i] = NULL;
    }
    free(arLocalImage);
    arLocalImage = NULL;


return pGLCMFVar;
}

 

 

说明:

参考了 《VisualC++数字图像模式识别技术详解》、《数字图像处理与机器视觉-VisualC++与Matlab实现》等书,此类为本文作者原创,可直接调用,转载/引用请注明出处。

-------------------------------------------------------------------------------------------------------------------------------

四 参考资料

 

GLCM Texture Tutorial
Gray-level Co-occurrence Matrix(灰度共生矩阵) _ 丕子

灰度共生矩阵 - tyut - 博客园

使用OpenCv的cvGLCM报错

灰度共发矩阵专题_百度文库

灰度共生矩阵VC++实现_百度文库

图像的灰度共生矩阵_百度文库

灰度共生矩阵_百度文库

提取共生矩阵特征 - wqvbjhc的专栏 - CSDN博客

基于灰度共生矩阵的纹理特征提取 - docin.com豆丁网

基于灰度共生矩阵的图像分割方法研究_百度文库

一个使用GLCM的例子.(修改了CvTexture的bug)

《VisualC++数字图像模式识别技术详解》

《数字图像处理与机器视觉-VisualC++与Matlab实现》

------------------------------------------------------------------------------------------------------------------------------

 

Author:         SKySeraph

 

Email/GTalk: zgzhaobo@gmail.com    QQ:452728574

 

From:         http://www.cnblogs.com/skyseraph/

 

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.

 

 -----------------------------------------------------------------------------------------------------------------------------

【图像算法】图像特征:GLCM灰度共生矩阵,纹理特征

标签:

原文地址:http://www.cnblogs.com/GarfieldEr007/p/5459523.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!