标签:
KNN分类CIFAR-10,并且做Cross Validation,CIDAR-10数据库数据如下:
knn.py : 主要的试验流程
from cs231n.data_utils import load_CIFAR10 from cs231n.classifiers import KNearestNeighbor import random import numpy as np import matplotlib.pyplot as plt # set plt params plt.rcParams[‘figure.figsize‘] = (10.0, 8.0) # set default size of plots plt.rcParams[‘image.interpolation‘] = ‘nearest‘ plt.rcParams[‘image.cmap‘] = ‘gray‘ cifar10_dir = ‘cs231n/datasets/cifar-10-batches-py‘ x_train,y_train,x_test,y_test = load_CIFAR10(cifar10_dir) print‘x_train : ‘,x_train.shape print‘y_train : ‘,y_train.shape print‘x_test : ‘,x_test.shape,‘y_test : ‘,y_test.shape #visual training example classes = [‘plane‘,‘car‘,‘bird‘,‘cat‘,‘deer‘,‘dog‘,‘forg‘,‘horse‘,‘ship‘,‘truck‘] num_classes = len(classes) samples_per_class = 7 for y,cls in enumerate(classes): #flaznonzero return indices_array of the none-zero elements # ten classes, y_train and y_test all in [1...10] idxs = np.flatnonzero(y_train == y) idxs = np.random.choice(idxs , samples_per_class, replace = False) for i,idx in enumerate(idxs): plt_idx = i*num_classes + y + 1 # subplot(m,n,p) # m : length of subplot # n : width of subplot # p : location of subplot plt.subplot(samples_per_class,num_classes,plt_idx) plt.imshow(x_train[idx].astype(‘uint8‘)) # hidden the axis info plt.axis(‘off‘) if i == 0: plt.title(cls) plt.show() # subsample data for more dfficient code execution num_training = 5000 #range(5)=[0,1,2,3,4] mask = range(num_training) x_train = x_train[mask] y_train = y_train[mask] num_test = 500 mask = range(num_test) x_test = x_test[mask] y_test = y_test[mask] #the image data has three chanels #the next two step shape the image size 32*32*3 to 3072*1 x_train = np.reshape(x_train,(x_train.shape[0],-1)) x_test = np.reshape(x_test,(x_test.shape[0],-1)) print ‘after subsample and re shape:‘ print ‘x_train : ‘,x_train.shape," x_test : ",x_test.shape #KNN classifier classifier = KNearestNeighbor() classifier.train(x_train,y_train) # compute the distance between test_data and train_data dists = classifier.compute_distances_no_loops(x_test) #each row is a single test example and its distances to training example print ‘dist shape : ‘,dists.shape plt.imshow(dists , interpolation=‘none‘) plt.show() y_test_pred = classifier.predict_labels(dists,k = 5) num_correct = np.sum(y_test_pred == y_test) acc = float(num_correct)/num_test print‘k=5 ,The Accurancy is : ‘, acc #Cross-Validation #5-fold cross validation split the training data to 5 pieces num_folds = 5 #k is params of knn k_choice = [1,5,8,11,15,18,20,50,100] x_train_folds = [] y_train_folds = [] x_train_folds = np.array_split(x_train,num_folds) y_train_folds = np.array_split(y_train,num_folds) k_to_acc={} for k in k_choice: k_to_acc[k] =[] for k in k_choice: print ‘cross validation : k = ‘, k for j in range(num_folds): #vstack :stack the array to matrix #vertical x_train_cv = np.vstack(x_train_folds[0:j]+x_train_folds[j+1:]) x_test_cv = x_train_folds[j] #>>> a = np.array((1,2,3)) #>>> b = np.array((2,3,4)) #>>> np.hstack((a,b)) # horizontally y_train_cv = np.hstack(y_train_folds[0:j]+y_train_folds[j+1:]) y_test_cv = y_train_folds[j] classifier.train(x_train_cv,y_train_cv) dists_cv = classifier.compute_distances_no_loops(x_test_cv) y_test_pred = classifier.predict_labels(dists_cv,k) num_correct = np.sum(y_test_pred == y_test_cv) acc = float(num_correct)/ num_test k_to_acc[k].append(acc) print k_to_acc
k_nearest_neighbor.py : knn算法的实现:
import numpy as np from collections import Counter class KNearestNeighbor(object): """ a kNN classifier with L2 distance """ def __init__(self): pass def train(self, X, y): """ Train the classifier. For k-nearest neighbors this is just memorizing the training data. Inputs: - X: A numpy array of shape (num_train, D) containing the training data consisting of num_train samples each of dimension D. - each row is a training example - y: A numpy array of shape (N,) containing the training labels, where y[i] is the label for X[i]. """ self.X_train = X self.y_train = y def predict(self, X, k=1, num_loops=0): """ Predict labels for test data using this classifier. Inputs: - X: A numpy array of shape (num_test, D) containing test data consisting of num_test samples each of dimension D. - k: The number of nearest neighbors that vote for the predicted labels. - num_loops: Determines which implementation to use to compute distances between training points and testing points. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) elif num_loops == 2: dists = self.compute_distances_two_loops(X) else: raise ValueError(‘Invalid value %d for num_loops‘ % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a nested loop over both the training data and the test data. Inputs: - X: A numpy array of shape (num_test, D) containing test data. Returns: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] is the Euclidean distance between the ith test point and the jth training point. """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in xrange(num_test): for j in xrange(num_train): ##################################################################### # TODO: # # Compute the l2 distance between the ith test point and the jth # # training point, and store the result in dists[i, j]. You should # # not use a loop over dimension. # ##################################################################### #Euclidean distance #dists[i,j] = np.sqrt(np.sum(X[i,:]-self.X_train[j,:])**2) # use linalg make it more easy dists[i,j] = np.linalg.norm(self.X_train[j,:]-X[i,:]) ##################################################################### # END OF YOUR CODE # ##################################################################### return dists def compute_distances_one_loop(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in xrange(num_test): ####################################################################### # TODO: # # Compute the l2 distance between the ith test point and all training # # points, and store the result in dists[i, :]. # ####################################################################### #evevy row minus X[i,:] then norm it # axis = 1 imply operations by row dist[i,:] = np.linalg.norm(self.X_train - X[i,:],axis = 1) ####################################################################### # END OF YOUR CODE # ####################################################################### return dists def compute_distances_no_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) ######################################################################### # TODO: # # Compute the l2 distance between all test points and all training # # points without using any explicit loops, and store the result in # # dists. # # # # You should implement this function using only basic array operations; # # in particular you should not use functions from scipy. # # # # HINT: Try to formulate the l2 distance using matrix multiplication # # and two broadcast sums. # ######################################################################### M = np.dot(X , self.X_train.T) te = np.square(X).sum(axis = 1) tr = np.square(self.X_train).sum(axis = 1) dists = np.sqrt(-2*M +tr+np.matrix(te).T) ######################################################################### # END OF YOUR CODE # ######################################################################### return dists def predict_labels(self, dists, k=1): """ Given a matrix of distances between test points and training points, predict a label for each test point. Inputs: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] gives the distance betwen the ith test point and the jth training point. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ num_test = dists.shape[0] y_pred = np.zeros(num_test) for i in xrange(num_test): # A list of length k storing the labels of the k nearest neighbors to # the ith test point. closest_y = [] ######################################################################### # TODO: # # Use the distance matrix to find the k nearest neighbors of the ith # # testing point, and use self.y_train to find the labels of these # # neighbors. Store these labels in closest_y. # # Hint: Look up the function numpy.argsort. # ######################################################################### labels = self.y_train[np.argsort(dists[i,:])].flatten() closest_y = labels[0:k] ######################################################################### # TODO: # # Now that you have found the labels of the k nearest neighbors, you # # need to find the most common label in the list closest_y of labels. # # Store this label in y_pred[i]. Break ties by choosing the smaller # # label. # ######################################################################### c = Counter(closest_y) y_pred[i] = c.most_common(1)[0][0] ######################################################################### # END OF YOUR CODE # ######################################################################### return y_pred
data_utils.py : CIFAR-10数据的读取
import cPickle as pickle import numpy as np import os from scipy.misc import imread def load_CIFAR_batch(filename): """ load single batch of cifar """ with open(filename, ‘rb‘) as f: datadict = pickle.load(f) X = datadict[‘data‘] Y = datadict[‘labels‘] X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float") Y = np.array(Y) return X, Y def load_CIFAR10(ROOT): """ load all of cifar """ xs = [] ys = [] for b in range(1,6): f = os.path.join(ROOT, ‘data_batch_%d‘ % (b, )) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) del X, Y Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, ‘test_batch‘)) return Xtr, Ytr, Xte, Yte def load_tiny_imagenet(path, dtype=np.float32): """ Load TinyImageNet. Each of TinyImageNet-100-A, TinyImageNet-100-B, and TinyImageNet-200 have the same directory structure, so this can be used to load any of them. Inputs: - path: String giving path to the directory to load. - dtype: numpy datatype used to load the data. Returns: A tuple of - class_names: A list where class_names[i] is a list of strings giving the WordNet names for class i in the loaded dataset. - X_train: (N_tr, 3, 64, 64) array of training images - y_train: (N_tr,) array of training labels - X_val: (N_val, 3, 64, 64) array of validation images - y_val: (N_val,) array of validation labels - X_test: (N_test, 3, 64, 64) array of testing images. - y_test: (N_test,) array of test labels; if test labels are not available (such as in student code) then y_test will be None. """ # First load wnids with open(os.path.join(path, ‘wnids.txt‘), ‘r‘) as f: wnids = [x.strip() for x in f] # Map wnids to integer labels wnid_to_label = {wnid: i for i, wnid in enumerate(wnids)} # Use words.txt to get names for each class with open(os.path.join(path, ‘words.txt‘), ‘r‘) as f: wnid_to_words = dict(line.split(‘\t‘) for line in f) for wnid, words in wnid_to_words.iteritems(): wnid_to_words[wnid] = [w.strip() for w in words.split(‘,‘)] class_names = [wnid_to_words[wnid] for wnid in wnids] # Next load training data. X_train = [] y_train = [] for i, wnid in enumerate(wnids): if (i + 1) % 20 == 0: print ‘loading training data for synset %d / %d‘ % (i + 1, len(wnids)) # To figure out the filenames we need to open the boxes file boxes_file = os.path.join(path, ‘train‘, wnid, ‘%s_boxes.txt‘ % wnid) with open(boxes_file, ‘r‘) as f: filenames = [x.split(‘\t‘)[0] for x in f] num_images = len(filenames) X_train_block = np.zeros((num_images, 3, 64, 64), dtype=dtype) y_train_block = wnid_to_label[wnid] * np.ones(num_images, dtype=np.int64) for j, img_file in enumerate(filenames): img_file = os.path.join(path, ‘train‘, wnid, ‘images‘, img_file) img = imread(img_file) if img.ndim == 2: ## grayscale file img.shape = (64, 64, 1) X_train_block[j] = img.transpose(2, 0, 1) X_train.append(X_train_block) y_train.append(y_train_block) # We need to concatenate all training data X_train = np.concatenate(X_train, axis=0) y_train = np.concatenate(y_train, axis=0) # Next load validation data with open(os.path.join(path, ‘val‘, ‘val_annotations.txt‘), ‘r‘) as f: img_files = [] val_wnids = [] for line in f: img_file, wnid = line.split(‘\t‘)[:2] img_files.append(img_file) val_wnids.append(wnid) num_val = len(img_files) y_val = np.array([wnid_to_label[wnid] for wnid in val_wnids]) X_val = np.zeros((num_val, 3, 64, 64), dtype=dtype) for i, img_file in enumerate(img_files): img_file = os.path.join(path, ‘val‘, ‘images‘, img_file) img = imread(img_file) if img.ndim == 2: img.shape = (64, 64, 1) X_val[i] = img.transpose(2, 0, 1) # Next load test images # Students won‘t have test labels, so we need to iterate over files in the # images directory. img_files = os.listdir(os.path.join(path, ‘test‘, ‘images‘)) X_test = np.zeros((len(img_files), 3, 64, 64), dtype=dtype) for i, img_file in enumerate(img_files): img_file = os.path.join(path, ‘test‘, ‘images‘, img_file) img = imread(img_file) if img.ndim == 2: img.shape = (64, 64, 1) X_test[i] = img.transpose(2, 0, 1) y_test = None y_test_file = os.path.join(path, ‘test‘, ‘test_annotations.txt‘) if os.path.isfile(y_test_file): with open(y_test_file, ‘r‘) as f: img_file_to_wnid = {} for line in f: line = line.split(‘\t‘) img_file_to_wnid[line[0]] = line[1] y_test = [wnid_to_label[img_file_to_wnid[img_file]] for img_file in img_files] y_test = np.array(y_test) return class_names, X_train, y_train, X_val, y_val, X_test, y_test def load_models(models_dir): """ Load saved models from disk. This will attempt to unpickle all files in a directory; any files that give errors on unpickling (such as README.txt) will be skipped. Inputs: - models_dir: String giving the path to a directory containing model files. Each model file is a pickled dictionary with a ‘model‘ field. Returns: A dictionary mapping model file names to models. """ models = {} for model_file in os.listdir(models_dir): with open(os.path.join(models_dir, model_file), ‘rb‘) as f: try: models[model_file] = pickle.load(f)[‘model‘] except pickle.UnpicklingError: continue return models
通过 cv,最优的 k 值为7,accurancy=0.282,太低了,明天用cnn重复这个实验...
标签:
原文地址:http://www.cnblogs.com/ooon/p/5459670.html