标签:
图像算法:图像阈值分割
SkySeraph Dec 21st 2010 HQU
Email:zgzhaobo@gmail.com QQ:452728574
Latest Modified Date:Dec.21st 2010 HQU
一、工具:VC+OpenCV
二、语言:C++
三、原理(略)
四、程序
主程序(核心部分)
模块程序
迭代法
代码 /*======================================================================*/ /* 迭代法*/ /*======================================================================*/ // nMaxIter:最大迭代次数;nDiffRec:使用给定阀值确定的亮区与暗区平均灰度差异值 int DetectThreshold(IplImage*img, int nMaxIter, int& iDiffRec) //阀值分割:迭代法 { //图像信息 int height = img->height; int width = img->width; int step = img->widthStep/sizeof(uchar); uchar *data = (uchar*)img->imageData; iDiffRec =0; int F[256]={ 0 }; //直方图数组 int iTotalGray=0;//灰度值和 int iTotalPixel =0;//像素数和 byte bt;//某点的像素值 uchar iThrehold,iNewThrehold;//阀值、新阀值 uchar iMaxGrayValue=0,iMinGrayValue=255;//原图像中的最大灰度值和最小灰度值 uchar iMeanGrayValue1,iMeanGrayValue2; //获取(i,j)的值,存于直方图数组F for(int i=0;i<width;i++) { for(int j=0;j<height;j++) { bt = data[i*step+j]; if(bt<iMinGrayValue) iMinGrayValue = bt; if(bt>iMaxGrayValue) iMaxGrayValue = bt; F[bt]++; } } iThrehold =0;// iNewThrehold = (iMinGrayValue+iMaxGrayValue)/2;//初始阀值 iDiffRec = iMaxGrayValue - iMinGrayValue; for(int a=0;(abs(iThrehold-iNewThrehold)>0.5)&&a<nMaxIter;a++)//迭代中止条件 { iThrehold = iNewThrehold; //小于当前阀值部分的平均灰度值 for(int i=iMinGrayValue;i<iThrehold;i++) { iTotalGray += F[i]*i;//F[]存储图像信息 iTotalPixel += F[i]; } iMeanGrayValue1 = (uchar)(iTotalGray/iTotalPixel); //大于当前阀值部分的平均灰度值 iTotalPixel =0; iTotalGray =0; for(int j=iThrehold+1;j<iMaxGrayValue;j++) { iTotalGray += F[j]*j;//F[]存储图像信息 iTotalPixel += F[j]; } iMeanGrayValue2 = (uchar)(iTotalGray/iTotalPixel); iNewThrehold = (iMeanGrayValue2+iMeanGrayValue1)/2; //新阀值 iDiffRec = abs(iMeanGrayValue2 - iMeanGrayValue1); } //cout<<"The Threshold of this Image in imgIteration is:"<<iThrehold<<endl; return iThrehold; }
Otsu代码一
代码 /*======================================================================*/ /* OTSU global thresholding routine */ /* takes a 2D unsigned char array pointer, number of rows, and */ /* number of cols in the array. returns the value of the threshold */ /*parameter: *image --- buffer for image rows, cols --- size of image x0, y0, dx, dy --- region of vector used for computing threshold vvv --- debug option, is 0, no debug information outputed */ /* OTSU 算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。 下面的代码最早由 Ryan Dibble提供,此后经过多人Joerg.Schulenburg, R.Z.Liu 等修改,补正。 算法对输入的灰度图像的直方图进行分析,将直方图分成两个部分,使得两部分之间的距离最大。 划分点就是求得的阈值。 */ /*======================================================================*/ int otsu (unsigned char*image, int rows, int cols, int x0, int y0, int dx, int dy, int vvv) { unsigned char*np; // 图像指针 int thresholdValue=1; // 阈值 int ihist[256]; // 图像直方图,256个点 int i, j, k; // various counters int n, n1, n2, gmin, gmax; double m1, m2, sum, csum, fmax, sb; // 对直方图置零 memset(ihist, 0, sizeof(ihist)); gmin=255; gmax=0; // 生成直方图 for (i = y0 +1; i < y0 + dy -1; i++) { np = (unsigned char*)image[i*cols+x0+1]; for (j = x0 +1; j < x0 + dx -1; j++) { ihist[*np]++; if(*np > gmax) gmax=*np; if(*np < gmin) gmin=*np; np++; /* next pixel */ } } // set up everything sum = csum =0.0; n =0; for (k =0; k <=255; k++) { sum += (double) k * (double) ihist[k]; /* x*f(x) 质量矩*/ n += ihist[k]; /* f(x) 质量 */ } if (!n) { // if n has no value, there is problems... fprintf (stderr, "NOT NORMAL thresholdValue = 160\n"); return (160); } // do the otsu global thresholding method fmax =-1.0; n1 =0; for (k =0; k <255; k++) { n1 += ihist[k]; if (!n1) { continue; } n2 = n - n1; if (n2 ==0) { break; } csum += (double) k *ihist[k]; m1 = csum / n1; m2 = (sum - csum) / n2; sb = (double) n1 *(double) n2 *(m1 - m2) * (m1 - m2); /* bbg: note: can be optimized. */ if (sb > fmax) { fmax = sb; thresholdValue = k; } } // at this point we have our thresholding value // debug code to display thresholding values if ( vvv &1 ) fprintf(stderr,"# OTSU: thresholdValue = %d gmin=%d gmax=%d\n", thresholdValue, gmin, gmax); return(thresholdValue); }
Otsu代码二
代码 /*======================================================================*/ /* OTSU global thresholding routine */ /*======================================================================*/ int otsu2 (IplImage *image) { int w = image->width; int h = image->height; unsigned char*np; // 图像指针 unsigned char pixel; int thresholdValue=1; // 阈值 int ihist[256]; // 图像直方图,256个点 int i, j, k; // various counters int n, n1, n2, gmin, gmax; double m1, m2, sum, csum, fmax, sb; // 对直方图置零... memset(ihist, 0, sizeof(ihist)); gmin=255; gmax=0; // 生成直方图 for (i =0; i < h; i++) { np = (unsigned char*)(image->imageData + image->widthStep*i); for (j =0; j < w; j++) { pixel = np[j]; ihist[ pixel]++; if(pixel > gmax) gmax= pixel; if(pixel < gmin) gmin= pixel; } } // set up everything sum = csum =0.0; n =0; for (k =0; k <=255; k++) { sum += k * ihist[k]; /* x*f(x) 质量矩*/ n += ihist[k]; /* f(x) 质量 */ } if (!n) { // if n has no value, there is problems... //fprintf (stderr, "NOT NORMAL thresholdValue = 160\n"); thresholdValue =160; goto L; } // do the otsu global thresholding method fmax =-1.0; n1 =0; for (k =0; k <255; k++) { n1 += ihist[k]; if (!n1) { continue; } n2 = n - n1; if (n2 ==0) { break; } csum += k *ihist[k]; m1 = csum / n1; m2 = (sum - csum) / n2; sb = n1 * n2 *(m1 - m2) * (m1 - m2); /* bbg: note: can be optimized. */ if (sb > fmax) { fmax = sb; thresholdValue = k; } } L: for (i =0; i < h; i++) { np = (unsigned char*)(image->imageData + image->widthStep*i); for (j =0; j < w; j++) { if(np[j] >= thresholdValue) np[j] =255; else np[j] =0; } } //cout<<"The Threshold of this Image in Otsu is:"<<thresholdValue<<endl; return(thresholdValue); }
最大熵阀值
代码 /*============================================================================ = 代码内容:最大熵阈值分割 = 修改日期:2009-3-3 = 作者:crond123 = 博客:http://blog.csdn.net/crond123/ = E_Mail:crond123@163.com ===============================================================================*/ // 计算当前位置的能量熵 double caculateCurrentEntropy(CvHistogram * Histogram1,int cur_threshold,entropy_state state) { int start,end; int total =0; double cur_entropy =0.0; if(state == back) { start =0; end = cur_threshold; } else { start = cur_threshold; end =256; } for(int i=start;i<end;i++) { total += (int)cvQueryHistValue_1D(Histogram1,i);//查询直方块的值 P304 } for(int j=start;j<end;j++) { if((int)cvQueryHistValue_1D(Histogram1,j)==0) continue; double percentage = cvQueryHistValue_1D(Histogram1,j)/total; /*熵的定义公式*/ cur_entropy +=-percentage*logf(percentage); /*根据泰勒展式去掉高次项得到的熵的近似计算公式 cur_entropy += percentage*percentage;*/ } return cur_entropy; // return (1-cur_entropy); } //寻找最大熵阈值并分割 void MaxEntropy(IplImage *src,IplImage *dst) { assert(src != NULL); assert(src->depth ==8&& dst->depth ==8); assert(src->nChannels ==1); CvHistogram * hist = cvCreateHist(1,&HistogramBins,CV_HIST_ARRAY,HistogramRange);//创建一个指定尺寸的直方图 //参数含义:直方图包含的维数、直方图维数尺寸的数组、直方图的表示格式、方块范围数组、归一化标志 cvCalcHist(&src,hist);//计算直方图 double maxentropy =-1.0; int max_index =-1; // 循环测试每个分割点,寻找到最大的阈值分割点 for(int i=0;i<HistogramBins;i++) { double cur_entropy = caculateCurrentEntropy(hist,i,object)+caculateCurrentEntropy(hist,i,back); if(cur_entropy>maxentropy) { maxentropy = cur_entropy; max_index = i; } } cout<<"The Threshold of this Image in MaxEntropy is:"<<max_index<<endl; cvThreshold(src, dst, (double)max_index,255, CV_THRESH_BINARY); cvReleaseHist(&hist); }
基本全局阀值法
代码 /*============================================================================ = 代码内容:基本全局阈值法 ==============================================================================*/ int BasicGlobalThreshold(int*pg,int start,int end) { // 基本全局阈值法 int i,t,t1,t2,k1,k2; double u,u1,u2; t=0; u=0; for (i=start;i<end;i++) { t+=pg[i]; u+=i*pg[i]; } k2=(int) (u/t); // 计算此范围灰度的平均值 do { k1=k2; t1=0; u1=0; for (i=start;i<=k1;i++) { // 计算低灰度组的累加和 t1+=pg[i]; u1+=i*pg[i]; } t2=t-t1; u2=u-u1; if (t1) u1=u1/t1; // 计算低灰度组的平均值 else u1=0; if (t2) u2=u2/t2; // 计算高灰度组的平均值 else u2=0; k2=(int) ((u1+u2)/2); // 得到新的阈值估计值 } while(k1!=k2); // 数据未稳定,继续 //cout<<"The Threshold of this Image in BasicGlobalThreshold is:"<<k1<<endl; return(k1); // 返回阈值 }
五 效果(略)
Author: SKySeraph
Email/GTalk: zgzhaobo@gmail.com QQ:452728574
From: http://www.cnblogs.com/skyseraph/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,请尊重作者的劳动成果。
【图像算法】七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)
标签:
原文地址:http://www.cnblogs.com/GarfieldEr007/p/5459629.html