标签:
list1 = iter([11,22,33,44,55,66,77,88,99])
print (list1.__next__())
print (list1.__next__())
结果:
11
22
结论:迭代器,只能取next的值。
应用:
fp = open("ha.bak")
for line in fp:
print (line.strip(‘\n‘))
fp.close()
with open("ha.bak",‘r‘) as fp:
for line1 in fp:
print (line1.strip())
在for line in fp中也可以使用for line in fp.readlines()函数,但是这样读起来效率很低,for line in fp可以像迭代器一样,一条一条的读入到内存中,不需要一次性读入。
生成器:
def fab(max):
n = 0
a = 0
b = 1
while n < max:
yield b
#print (b)
a, b = b, a + b
n = n + 1
f = fab(5)
print (f.__next__())
print (f.__next__())
print (f.__next__())
print (f.__next__())
print (f.__next__())
print (f.__next__())
使用yield参数相当于返回这样一个值(b),但是这样的返回不是作为函数的结束而返回的,而是像中断一样,下次你再访问的时候,还是从刚才那个中断开始。
1
1
2
3
5
Traceback (most recent call last):
File "D:/Python/day3/Test.py", line 20, in <module>
print (f.__next__())
StopIteration
查看另外一个例子“
def withdraw(account):
while account > 0:
account -= 100
yield 100
print ("withdraw again")
f = withdraw(500)
print (f.__next__())
print (f.__next__())
print (f.__next__())
print (f.__next__())
print (f.__next__())
print (f.__next__())
100
withdraw again
100
withdraw again
100
withdraw again
100
withdraw again
100
withdraw again
Traceback (most recent call last):
File "D:/Python/day3/Test.py", line 16, in <module>
print (f.__next__())
StopIteration
在这个例子中,每次取100最多只能有五次取钱的机会。在print (f.__next__())函数中间可以增加其他的程序代码,而当迭代器再次回来运行的时候,还是从刚才保存的状态开始。这样一个生产迭代器的函数叫做生成器。
标签:
原文地址:http://www.cnblogs.com/python-study/p/5460346.html