码迷,mamicode.com
首页 > 编程语言 > 详细

机器学习实战3:决策树学习笔记(python)

时间:2016-05-06 15:35:46      阅读:191      评论:0      收藏:0      [点我收藏+]

标签:

决策树就是在已知各种情况发生概率的情况下,通过构造决策树,评价项目风险,判断其可行性的决策分析方法,它是运用概率分析的一种图解法。

优缺点分析:
优点:计算复杂度不高,输出结果较直观,易于理解,对中间值的缺失不敏感,可以处理不相关特征数据
缺点:可能产生过度匹配


创建数据集并计算其熵值:

from math import log
import operator

def createDataSet():
    dataSet = [[1, 1, ‘yes‘],
               [1, 1, ‘yes‘],
               [1, 0, ‘no‘],
               [0, 1, ‘no‘],
               [0, 1, ‘no‘]]
    labels = [‘no surfacing‘,‘flippers‘]
    #change to discrete values
    return dataSet, labels

myDat,labels=createDataSet()
技术分享
技术分享

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:                                 #the the number of unique elements and their occurance
        currentLabel = featVec[-1]
        labelCounts[currentLabel] =labelCounts.get(currentLabel,0)+1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2)                   #log base 2
    return shannonEnt


shannonEnt=calcShannonEnt(myDat)
技术分享技术分享



将数据集的特征划分出来:

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

技术分享
技术分享



从特征中选择最好的划分方式:

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)    
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer

技术分享
技术分享
显示出最好的特征是第0个特征。


设计一个函数,返回出现次数最多的那个特征(后面创建树会用到该函数):

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

现在进行树的创建:

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don‘t mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree

myTree=createTree(myDat,labels)
myTree
技术分享技术分享


该树代表了如下这棵树:
技术分享技术分享


机器学习实战3:决策树学习笔记(python)

标签:

原文地址:http://blog.csdn.net/yf11112/article/details/51314916

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!