标签:
package cn.spark.study.core;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
/**
* transformation操作实战
* @author dd
*
*/
public class TransformationOperation {
public static void main(String[] args) {
//mapTest();
//filterTest();
//flatMapTest();
//groupByKeyTest();
//reduceByKeyTest();
//sortByKeyTest();
joinTest();
}
/**
* map算子案例:
* 将集合中的元素都乘以2
*/
private static void mapTest(){
SparkConf conf = new SparkConf()
.setAppName("map")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Integer> numbers = Arrays.asList(1,2,3,4,5);
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer arg0) throws Exception {
// TODO Auto-generated method stub
return arg0*2;
}
});
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer arg0) throws Exception {
// TODO Auto-generated method stub
System.out.print(arg0+" ");
}
});
sc.close();
}
/**
* filter算子案例:
* 过滤集合中的偶数
*/
private static void filterTest(){
SparkConf conf =new SparkConf()
.setAppName("filter")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Integer> numbers = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
//filter算子传入的也是Function,call方法的返回值是Boolean
//每一个初始RDD中的元素都会传入call方法,如果想在新的RDD中保留该元素则返回true,否则返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
@Override
public Boolean call(Integer arg0) throws Exception {
// TODO Auto-generated method stub
return arg0 % 2 == 0;
}
});
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer arg0) throws Exception {
System.out.println(arg0);
}
});
sc.close();
}
/**
* flatMap算zi
* 拆分一行文本的单词
*/
private static void flatMapTest(){
SparkConf conf = new SparkConf()
.setAppName("faltMap")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> lineList = Arrays.asList("hello you","hello me","hello world");
JavaRDD<String> lines = sc.parallelize(lineList);
/*
* 对RDD执行flatMap算子将每一行文本拆分为多个单词
* flatMap其实就是接收原始RDD中的每个元素,并进行各种处理返回多个元素,即封装在Iterable中
* 新的RDD中,即封装了所有的新元素,所以新的RDD大小一定大于原始的RDD
*/
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
@Override
public Iterable<String> call(String arg0) throws Exception {
// TODO Auto-generated method stub
return Arrays.asList(arg0.split(" "));
}
});
words.foreach(new VoidFunction<String>() {
private static final long serialVersionUID = 1L;
@Override
public void call(String arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0);
}
});
sc.close();
}
/**
* groupByKey算子
* 案例:按照班级对成绩进行分组
*/
private static void groupByKeyTest(){
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> scores = Arrays.asList(
new Tuple2<String, Integer>("class1",80),
new Tuple2<String, Integer>("class2",75),
new Tuple2<String, Integer>("class1",90),
new Tuple2<String, Integer>("class2",65));
//创建JavaPairRDD
JavaPairRDD<String, Integer> scoresRDD = sc.parallelizePairs(scores);
JavaPairRDD<String, Iterable<Integer>> groupScores = scoresRDD.groupByKey();
groupScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
@Override
public void call(Tuple2<String, Iterable<Integer>> arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println("class:"+arg0._1);
Iterator<Integer> it = arg0._2.iterator();
while(it.hasNext()){
System.out.println(it.next());
}
System.out.println("====================================");
}
});
sc.close();
}
/**
* reduceByKey算子
* 案例:求各个班级总分
*/
private static void reduceByKeyTest(){
SparkConf conf = new SparkConf()
.setAppName("reduceByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> scores = Arrays.asList(
new Tuple2<String, Integer>("class1",80),
new Tuple2<String, Integer>("class2",75),
new Tuple2<String, Integer>("class1",90),
new Tuple2<String, Integer>("class2",65));
JavaPairRDD<String, Integer> scoresRDD = sc.parallelizePairs(scores);
JavaPairRDD<String, Integer> totalScores = scoresRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer arg0, Integer arg1) throws Exception {
// TODO Auto-generated method stub
return arg0+arg1;
}
});
totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {
@Override
public void call(Tuple2<String, Integer> arg0) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0._1+" : "+arg0._2);
}
});
sc.close();
}
/**
* sortByKey算子
* 案例:对学生成绩进行排序
*/
private static void sortByKeyTest(){
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<Integer, String>> scores = Arrays.asList(
new Tuple2<Integer, String>(10,"leo"),
new Tuple2<Integer, String>(100,"ksc"),
new Tuple2<Integer, String>(99,"my"),
new Tuple2<Integer, String>(80,"jack"));
JavaPairRDD<Integer, String> scoresRDD = sc.parallelizePairs(scores);
//默认true升序,false降序
JavaPairRDD<Integer, String> sortedRDD = scoresRDD.sortByKey();
sortedRDD.foreach(new VoidFunction<Tuple2<Integer,String>>() {
@Override
public void call(Tuple2<Integer, String> arg0) throws Exception {
System.out.println(arg0._1+": "+arg0._2);
}
});
sc.close();
}
/**
* join
* 案例:打印学生成绩
*/
private static void joinTest(){
SparkConf conf = new SparkConf()
.setAppName("joinandCogroup")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<Integer, String>> studentsList = Arrays.asList(
new Tuple2<Integer, String>(1,"leo"),
new Tuple2<Integer, String>(2,"jack"),
new Tuple2<Integer, String>(3,"tom"));
List<Tuple2<Integer, Integer>> scoresList = Arrays.asList(
new Tuple2<Integer, Integer>(1,100),
new Tuple2<Integer, Integer>(2,90),
new Tuple2<Integer, Integer>(3,60));
//并行化两个集合
JavaPairRDD<Integer, String> studentsRDD = sc.parallelizePairs(studentsList);
JavaPairRDD<Integer, Integer> scoresRDD = sc.parallelizePairs(scoresList);
//使用join算子关联两个RDD
JavaPairRDD<Integer, Tuple2<String, Integer>> studentscores = studentsRDD.join(scoresRDD);
studentscores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> arg0)
throws Exception {
// TODO Auto-generated method stub
System.out.println("student id : "+arg0._1);
System.out.println("student name: "+arg0._2._1);
System.out.println("student score: "+arg0._2._2);
System.out.println("==========================================");
}
});
}
}
spark中transformation操作的各种算子(java版)
标签:
原文地址:http://blog.csdn.net/kongshuchen/article/details/51334115