标签:
大意:有n座岛和m条桥,每条桥上有w个兵守着,现在要派不少于守桥的士兵数的人去炸桥,只能炸一条桥,使得这n座岛不连通,求最少要派多少人去。
思路:我们就是要缩点后直接求桥上人的最少数量。(PS:1、注意图如果不联通直接输出0。2、如果图中的桥上人为0,个那么要让一个人去。3、重边的问题。这里可以忽略)
#include<map> #include<queue> #include<cmath> #include<cstdio> #include<stack> #include<iostream> #include<cstring> #include<algorithm> #define LL int #define inf 0x3f3f3f3f #define eps 1e-8 #include<vector> #define ls l,mid,rt<<1 #define rs mid+1,r,rt<<1|1 using namespace std; const int Ma = 1100; struct node{ int to,w,next; }q[Ma*Ma]; int head[Ma*Ma],dfn[Ma],num[Ma],du[Ma],stk[Ma*5],vis[Ma],low[Ma]; int cnt,top,tim,scc,out[Ma],f[Ma],n,mi; void Add(int a,int b,int c){ q[cnt].to = b; q[cnt].w = c; q[cnt].next = head[a]; head[a] = cnt++; } void init(){ scc = cnt = top = 0; tim = 1; mi = inf; memset(head,-1,sizeof(head)); for(int i = 1;i <= n;++ i){ f[i] = i; low[i] = vis[i] = out[i] = num[i] = dfn[i] = 0; } } void Tarjan(int u,int To){ low[u] = dfn[u] = tim++; vis[u] = 1; stk[top++] = u; for(int i = head[u]; ~i ; i = q[i].next){ int v = q[i].to; if(i == (To^1)) continue; if(!vis[v]){ Tarjan(v,i); low[u] = min(low[u],low[v]); if(low[v] > dfn[u]) if(q[i].w < mi) mi = q[i].w; } else low[u] = min(low[u],dfn[v]); } if(low[u] == dfn[u]){ scc++; while(top > 0&&stk[top] != u){ top --; vis[stk[top] ] = 1; num[stk[top] ] = scc; } } } int fi(int x){ return f[x] == x ? x:f[x]=fi(f[x]); } void mer(int a,int b){ int x = fi(a); int y = fi(b); x > y ? f[x] = y:f[y] = x; } int main(){ int m,i,j,k,a,b,c,cla; while(~scanf("%d%d",&n,&m)){ if(!n&&!m) break; init(); for(i = 0;i < m;++ i){ scanf("%d%d%d",&a,&b,&c); Add(a,b,c); Add(b,a,c); mer(a,b); } int tmp = 0; for(i = 1;i <= n;++ i) if(f[i] == i){ tmp++; if(tmp > 1) break; } if(tmp > 1){ puts("0");continue; } Tarjan(1,-1); for(i = 1;i <= n;++ i){ for(j = head[i]; ~j ; j=q[j].next){ int v = q[j].to; if(num[i]!=num[v]){ out[num[i]]++; } } } int ans = 0; for(i = 1;i <= scc;++ i){ if(out[i]==0) ans++; } if(ans==1){ puts("-1"); } else if(!mi){ puts("1"); } else printf("%d\n",mi); } return 0; }
HDU 4738 Caocao's Bridges(双联通分量+并查集)
标签:
原文地址:http://blog.csdn.net/grit_icpc/article/details/51334569