标签:
80.JAVA编程思想——复杂性理论
下面要介绍的程序的前身是由Larry O‘Brien 原创的一些代码,并以由Craig Reynolds 于1986 年编制的“Boids”程序为基础,当时是为了演示复杂性理论的一个特殊问题,名为“凸显”(Emergence)。这儿要达到的目标是通过为每种动物都规定少许简单的规则,从而逼真地再现动物的群聚行为。每个动物都能看到看到整个环境以及环境中的其他动物,但它只与一系列附近的“群聚伙伴”打交道。动物的移动基于三个简单的引导行为:
(1) 分隔:避免本地群聚伙伴过于拥挤。
(2) 方向:遵从本地群聚伙伴的普遍方向。
(3) 聚合:朝本地群聚伙伴组的中心移动。
更复杂的模型甚至可以包括障碍物的因素,动物能预知和避免与障碍冲突的能力,所以它们能围绕环境中的固定物体自由活动。除此以外,动物也可能有自己的特殊目标,这也许会造成群体按特定的路径前进。为简化讨论,避免障碍以及目标搜寻的因素并未包括到这里建立的模型中。尽管计算机本身比较简陋,而且采用的规则也相当简单,但结果看起来是真实的。也就是说,相当逼真的行为从这个简单的模型中“凸显”出来了。
程序以合成到一起的应用程序/程序片的形式提供:
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.util.*;
class Beast {
int x, y, // Screen position
currentSpeed; // Pixels per second
float currentDirection;// Radians
Color color; // Fill color
FieldOBeasts field; // Where theBeast roams
static finalintGSIZE= 10; // Graphic size
public Beast(FieldOBeasts f, intx, int y, float cD, int cS, Color c) {
field = f;
this.x = x;
this.y = y;
currentDirection = cD;
currentSpeed = cS;
color = c;
}
public voidstep() {
// You move based on those within your sight:
Vector seen = field.beastListInSector(this);
// If you‘re not out in front
if (seen.size() > 0) {
// Gather data on those you see
int totalSpeed = 0;
float totalBearing = 0.0f;
float distanceToNearest = 100000.0f;
Beast nearestBeast = (Beast) seen.elementAt(0);
Enumeration e = seen.elements();
while (e.hasMoreElements()) {
Beast aBeast = (Beast) e.nextElement();
totalSpeed += aBeast.currentSpeed;
float bearing = aBeast.bearingFromPointAlongAxis(x, y, currentDirection);
totalBearing += bearing;
float distanceToBeast = aBeast.distanceFromPoint(x, y);
if (distanceToBeast < distanceToNearest){
nearestBeast = aBeast;
distanceToNearest = distanceToBeast;
}
}
// Rule 1: Match average speed of those
// in the list:
currentSpeed = totalSpeed / seen.size();
// Rule 2: Move towards the perceived
// center of gravity of the herd:
currentDirection = totalBearing / seen.size();
// Rule 3: Maintain a minimum distance
// from those around you:
if (distanceToNearest <= field.minimumDistance){
currentDirection = nearestBeast.currentDirection;
currentSpeed = nearestBeast.currentSpeed;
if (currentSpeed > field.maxSpeed){
currentSpeed = field.maxSpeed;
}
}
} else { // You are infront, so slow down
currentSpeed = (int) (currentSpeed * field.decayRate);
}
// Make the beast move:
x += (int) (Math.cos(currentDirection) * currentSpeed);
y += (int) (Math.sin(currentDirection) * currentSpeed);
x %= field.xExtent;
y %= field.yExtent;
if (x < 0)
x += field.xExtent;
if (y < 0)
y += field.yExtent;
}
public floatbearingFromPointAlongAxis(int originX,intoriginY,floataxis){
// Returns bearing angle of the current Beast
// in the world coordiante system
try {
double bearingInRadians = Math.atan((this.y - originY) / (this.x - originX));
// Inverse tan has two solutions, so you
// have to correct for other quarters:
if (x < originX){
if (y < originY){
bearingInRadians += -(float) Math.PI;
} else {
bearingInRadians = (float) Math.PI - bearingInRadians;
}
}
// Just subtract the axis (in radians):
return (float) (axis - bearingInRadians);
} catch (ArithmeticException aE) {
// Divide by 0 error possible on this
if (x > originX){
return 0;
} else
return (float) Math.PI;
}
}
public floatdistanceFromPoint(int x1,inty1){
return (float) Math.sqrt(Math.pow(x1 - x, 2) + Math.pow(y1 - y, 2));
}
public Point position() {
return new Point(x, y);
}
// Beasts knowhow to draw themselves:
public voiddraw(Graphics g) {
g.setColor(color);
int directionInDegrees = (int)((currentDirection* 360) / (2 * Math.PI));
int startAngle = directionInDegrees- FieldOBeasts.halfFieldOfView;
int endAngle = 90;
g.fillArc(x, y, GSIZE,GSIZE,startAngle,endAngle);
}
}
public class FieldOBeasts extends Applet implements Runnable {
private Vector beasts;
static floatfieldOfView= (float)(Math.PI/ 4), // In radians
// Deceleration % per second:
decayRate = 1.0f, minimumDistance= 10f; // In pixels
static inthalfFieldOfView = (int)((fieldOfView* 360) / (2 * Math.PI)), xExtent= 0, yExtent= 0, numBeasts= 50,
maxSpeed = 20; // Pixels/second
boolean uniqueColors= true;
Thread thisThread;
int delay= 25;
public voidinit() {
if (xExtent == 0 && yExtent == 0) {
xExtent = Integer.parseInt(getParameter("xExtent"));
yExtent = Integer.parseInt(getParameter("yExtent"));
}
beasts = makeBeastVector(numBeasts, uniqueColors);
// Now start the beasts a-rovin‘:
thisThread = new Thread(this);
thisThread.start();
}
public voidrun() {
while (true) {
for (int i = 0; i < beasts.size(); i++) {
Beast b = (Beast) beasts.elementAt(i);
b.step();
}
try {
thisThread.sleep(delay);
} catch (InterruptedException ex) {
}
repaint(); // Otherwise it won‘t update
}
}
Vector makeBeastVector(int quantity, boolean uniqueColors) {
Vector newBeasts = new Vector();
Random generator = new Random();
// Used only if uniqueColors is on:
double cubeRootOfBeastNumber = Math.pow((double) numBeasts, 1.0 / 3.0);
float colorCubeStepSize = (float) (1.0 / cubeRootOfBeastNumber);
float r = 0.0f;
float g = 0.0f;
float b = 0.0f;
for (int i = 0; i < quantity; i++) {
int x = (int)(generator.nextFloat()* xExtent);
if (x > xExtent - Beast.GSIZE)
x -= Beast.GSIZE;
int y = (int)(generator.nextFloat()* yExtent);
if (y > yExtent - Beast.GSIZE)
y -= Beast.GSIZE;
float direction = (float) (generator.nextFloat() * 2 * Math.PI);
int speed = (int)(generator.nextFloat()* (float)maxSpeed);
if (uniqueColors) {
r += colorCubeStepSize;
if (r > 1.0) {
r -= 1.0f;
g += colorCubeStepSize;
if (g > 1.0) {
g -= 1.0f;
b += colorCubeStepSize;
if (b > 1.0)
b -= 1.0f;
}
}
}
newBeasts.addElement(new Beast(this, x, y, direction,speed,newColor(r,g,b)));
}
return newBeasts;
}
public Vector beastListInSector(Beast viewer) {
Vector output = new Vector();
Enumeration e = beasts.elements();
Beast aBeast = (Beast) beasts.elementAt(0);
int counter = 0;
while (e.hasMoreElements()) {
aBeast = (Beast) e.nextElement();
if (aBeast != viewer){
Point p = aBeast.position();
Point v = viewer.position();
float bearing = aBeast.bearingFromPointAlongAxis(v.x, v.y, viewer.currentDirection);
if (Math.abs(bearing) < fieldOfView / 2)
output.addElement(aBeast);
}
}
return output;
}
public voidpaint(Graphics g){
Enumeration e = beasts.elements();
while (e.hasMoreElements()) {
((Beast) e.nextElement()).draw(g);
}
}
public staticvoidmain(String[] args){
FieldOBeasts field = new FieldOBeasts();
field.xExtent = 640;
field.yExtent = 480;
Frame frame = new Frame("Field ‘O Beasts");
// Optionally use a command-line argument
// for the sleep time:
if (args.length>= 1)
field.delay = Integer.parseInt(args[0]);
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);
}
});
frame.add(field, BorderLayout.CENTER);
frame.setSize(640, 480);
field.init();
field.start();
frame.setVisible(true);
}
} /// :~
尽管这并非对Craig Reynold 的“Boids”例子中的行为完美重现,但它却展现出了自己独有的迷人之外。通过对数字进行调整,即可进行全面的修改。
通过学习,大家知道运用Java 可做到一些较复杂的事情。通过这些例子亦可看出,尽管Java 必定有自己的局限,但受那些局限影响的主要是性能(比如写好文字处理程序后,会发现C++的版本要快得多——这部分是由于IO 库做得不完善造成的;而在你读到本书的时候,情况也许已发生了变化。但Java 的局限也仅此而已,它在语言表达方面的能力是无以伦比的。利用Java,几乎可以表达出我们想得到的任何事情。而与此同时,Java 在表达的方便性和易读性上,也做足了功夫。所以在使用Java 时,一般不会陷入其他语言常见的那种复杂境地。使用那些语言时,会感觉它们象一个爱唠叨的老太婆,哪有Java 那样清纯、简练!而且通过Java 1.2 的JFC/Swing 库,AWT 的表达能力和易用性甚至又得到了进一步的增强。
标签:
原文地址:http://blog.csdn.net/notbaron/article/details/51347900