标签:
#!/usr/bin/env python # -*- coding:utf-8 -*- """从Thread类中派生出一个子例,创建一个这个子类的实例""" import threading from time import sleep, ctime loops = (4, 2) class MyThread(threading.Thread): """ 1.子类化Thread类 2.要先调用基类的构造器,进行显式覆盖 3.重新定义run()函数 """ def __init__(self, func, args, name=‘‘): super(MyThread, self).__init__() self.name = name self.func = func self.args = args def run(self): self.func(*self.args) def loop(nloop, nsec): print ‘start loop‘, nloop, ‘at:‘, ctime() sleep(nsec) print ‘loop‘, nloop, ‘done at:‘, ctime() def main(): print ‘starting at:‘, ctime() threads = [] nloops = range(len(loops)) for i in nloops: t = MyThread(loop, (i, loops[i]), loop.__name__) # 创建子类的实例 threads.append(t) for i in nloops: threads[i].start() for i in nloops: threads[i].join() print ‘all DONE at:‘, ctime() if __name__ == ‘__main__‘: main()
#!/usr/bin/env python # -*- coding:utf-8 -*- """ 1.单独化子类,让Thread的子类更加通用。 2.加上getResult()函数译返回函数的运行结果。 """ import threading from time import ctime class MyThread(threading.Thread): def __init__(self, func, args, name=‘‘): threading.Thread.__init__(self) self.name = name self.func = func self.args = args def getResult(self): return self.res def run(self): print ‘starting‘, self.name, ‘at:‘, ctime() self.res = apply(self.func, self.args) print self.name, ‘finished at:‘, ctime()
18.8斐波那契、阶乘、累加和
#!/usr/bin/env python # -*- coding:utf-8 -*- from myThread import MyThread from time import ctime, sleep def fib(x): """求斐波那契数列之和""" sleep(0.005) if x < 2: return 1 return fib(x-2) + fib(x-1) def fac(x): """求阶乘""" sleep(0.1) if x < 2: return 1 return x * fac(x-1) def sum_(x): """自然数累加和""" sleep(0.1) if x < 2: return 1 return x + sum_(x-1) funcs = [fib, fac, sum_] # 将三个函数放到列表中 n = 12 def main(): nfuncs = range(len(funcs)) # nfuncs = range(3) print ‘*** SINGLE THREAD‘ # 单线程计算三个函数 for i in nfuncs: print ‘staring‘, funcs[i].__name__, ‘at:‘, ctime() # 打印出函数名称,开始运行时间 print funcs[i](n) # 打印计算结果 print funcs[i].__name__, ‘finished at:‘, ctime() # 打印出函数名称,结束运行时间 print ‘\n*** MULTIPLE THREADS‘ # 多线程计算三个函数 threads = [] for i in nfuncs: t = MyThread(funcs[i], (n,), funcs[i].__name__) # 实例化三个MyThread对象 threads.append(t) # 将三个对象放到列表中 for i in nfuncs: threads[i].start() # 启动三个线程 for i in nfuncs: threads[i].join() # join()会等到线程结束或超时,即允许主线程等待线程结束 print threads[i].getResult() # 调用对象的getResult()方法 print ‘all DONE‘ if __name__ == ‘__main__‘: # 独立运行脚本,即在此脚本在直接运行时,才会调用main()函数 main()
#!/usr/bin/env python # -*- coding: utf8 -*- from random import randint # randint随机进行生产和消耗 from time import sleep from Queue import Queue from myThread import MyThread def writeQ(queue): print ‘producing object for Q...‘, queue.put(‘xxx‘, 1) # 把xxx对象放进队列中,并等待队列中有空间为止 print "size now", queue.qsize() # 返回队列大小 def readQ(queue): val = queue.get(1) # 从队列中取出一个对象(消耗) print ‘consumed object form Q... size now‘, queue.qsize() # 返回队列大小 def writer(queue, loops): """一次往队列中放进一个对象,等待一会,然后再做给定次数的相同的事""" for i in range(loops): writeQ(queue) # 调用writeQ,放进一个对象 sleep(randint(1, 3)) # 随机睡眠1~3秒 def reader(queue, loops): """一次从队列中取出一个对象,等待一会,然后做给定次数的相同的事""" for i in range(loops): readQ(queue) sleep(randint(2, 5)) # 睡眠时间比 write 中的长,以使 reader 在取数据的时候能够拿到数据 funcs = [writer, reader] nfuncs = range(len(funcs)) def main(): nloops = randint(2, 5) q = Queue(32) # 创建一个大小为32的对象,和 q 绑定 threads = [] for i in nfuncs: t = MyThread(funcs[i], (q, nloops), funcs[i].__name__) # 实例化 writer, reader 这两个对象 threads.append(t) # 放入空列表中 for i in nfuncs: threads[i].start() # 启动线程 for i in nfuncs: threads[i].join() # join()会等到线程结束或超时,即允许主线程等待线程结束 print ‘all DONE‘ if __name__ == ‘__main__‘: # 独立运行脚本 main()
标签:
原文地址:http://www.cnblogs.com/twtp/p/5485674.html