标签:
遇到了一个很简单而有意思的问题,可以看出不同的算法策略对这个问题求解的优化过程。
问题:寻找数组中的第K大的元素。
最简单的想法是直接进行排序,算法复杂度是O(N*logN)。这么做很明显比较低效率,因为不要求别的信息只要计算出第K大的元素。当然,如果在某种情况下需要频繁访问第K大的元素就可以先进行一次排序在直接得出结果。
第一种方式是这样,用选择排序,冒泡法,或者交换排序这类的排序,对前K个元素进行排序。这三种算法也许不是最快的排序算法。但是都有个性质:计算出最大(小)的元素的算法复杂度是O(N)。这个过程不能中断,要计算第三大的元素必须建立在已经算出第二大的元素的基础上(因为每次都是计算当前数组最大)。所以它的算法复杂度是O(N*K);
第二种方法是用快速排序的思想。快速排序每次把一个元素交换到正确的位置,同时把左边的都方上大的,右边都放上小的。这个算法每一次选取一个枢纽元,排序之后,查看枢纽元的位置。如果它的位置大于K,就说明,要求出前面一个子序列的第K大的元素。反之,如果小于K,就说明要求出在后面一个序列的第K - 前一个序列的长度个元素。
如此,就把这个问题改变成了一个可以用快排思想解决的问题。对于快速排序,算法复杂度是O(N*logN)。而这个算法的算法复杂度是O(N)。为什么呢?
其实这个地方的算法复杂度分析很有意思。第一次交换,算法复杂度为O(N),接下来的过程和快速排序不同,快速排序是要继续处理两边的数据,再合并,合并操作的算法复杂度是O(1),于是总的算法复杂度是O(N*logN)(可以这么理解,每次交换用了N,一共logN次)。但是这里在确定枢纽元的相对位置(在K的左边或者右边)之后不用再对剩下的一半进行处理。也就是说第二次插入的算法复杂度不再是O(N)而是O(N/2),这不还是一样吗?其实不一样,因为接下来的过程是1+1/2+1/4+........ < 2,换句话说就是一共是O(2N)的算法复杂度也就是O(N)的算法复杂度。
这个算法目前我在数据结构和算法书上和剑指Offer上都看到过。算是一种很经典很经典的算法。原因是因为他通过努力把算法复杂度在每次递归中下降一些,最终让整个算法的复杂度下降极多,算是一种十分聪明的做法。
第三种方法很是简单,但是使用它需要某个条件,也就是输入数组的取值范围很小,最好的情况是能形成完全分布,也就是1000大小的数组里面的数字是从1到1000这样子。首先,生成一个能够完全装下原数组的数组,这个地方的装下是指数组大小等于原数组最大元素(也许还有优化,但这么描述简单一点),比如原数组是[1,2,3,4,5],我要生成的数组大小是5,如果原数组是[5,3,6,10],我要生成的数组大小是10。接下来遍历原数组,把每一个元素放到第二个数组对应的下标处,5就放在下标为5的地方(实际过程中要减1,因为是数组从0开始)。放的过程中增加元素值用来统计这个元素出现的次数。这一过程算法复杂度是O(N)。接下来,再遍历生成的数组,找出第K大的元素。
这个过程的算法复杂度是多少呢?其实这个和原数组很有关系,原数组越离散也就越糟糕。比如原数组是[1,1000],这样就十分糟糕。第二部的算法复杂度是O(M),M是前数组的最大值。总的算法复杂度O(N)+O(M);
由此可见第三种方法在这个问题的处理非常不好。虽然第三种方法限制颇多(浮点型和负数还有对原数组大小的要求),但是第三种方法的实质是一种散列。就是把原来的映射关系变成了一种反映射。也就是说如果形成了数据与地址的直接映射。但是这种映射的问题也体现的很明显,它这么做也只能算是捡了个漏子,如果输入数组稍微一边,还是一样要用hash算法计算其hash值。再把hash值映射到地址上。
第四种方法是用二叉堆来做。对大小为N的数组构建二叉堆的算法复杂度是O(N)。然后每次下滤的算法复杂度是O(logN),一共下滤K次,算法复杂度是O(N+K*logN)。
很明显这么做比第二种方法要慢一些。
标签:
原文地址:http://www.cnblogs.com/dsj2016/p/5500204.html