标签:
值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,这也正是NB之处。如下图所示:
三、在哪里下载?
http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz
2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置
<div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop/flume-1.5.0-bin# cp conf/flume-env.sh.template conf/flume-env.sh</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop/flume-1.5.0-bin# vi conf/flume-env.sh</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># or more contributor license agreements. See the NOTICE file</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Licensed to the Apache Software Foundation (ASF) under one</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># distributed with this work for additional information</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># "License"); you may not use this file except in compliance</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># regarding copyright ownership. The ASF licenses this file</span></div># to you under the Apache License, Version 2.0 (the <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">#</span></div># with the License. You may obtain a copy of the License at <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># distributed under the License is distributed on an "AS IS" BASIS,</span></div># http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Enviroment variables can be set here.</span></div># See the License for the specific language governing permissions and # limitations under the License. # If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced # during Flume startup. JAVA_HOME=/usr/lib/jvm/java-7-oracle <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">#FLUME_CLASSPATH=""</span></div># Give Flume more memory and pre-allocate, enable remote monitoring via JMX #JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote" <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Note that the Flume conf directory is always included in the classpath.</span></div>
3)验证是否安装成功
<div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng version</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">Flume 1.5.0</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">From sourcewith checksum a01fe726e4380ba0c9f7a7d222db961f</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">Compiled by hshreedharan on Wed May 7 14:49:18 PDT 2014</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop#</span></div>
出现上面的信息,表示安装成功了
<div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop#vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"> </span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources = r1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks = k1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"> </span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.channels = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Describe/configure the source</span></div>a1.sources.r1.type= avro <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Use a channel which buffers events in memory</span></div>a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 4141 <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks.k1.type= logger</span></div> # Describe the sink <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Bind the source and sink to the channel</span></div>a1.channels.c1.type= memory a1.channels.c1.capacity = 1000 <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels.c1.transactionCapacity = 100</span></div> a1.sources.r1.channels = c1 <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks.k1.channel = c1</span></div>
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00
f)在m1的控制台,可以看到以下信息,注意最后一行:
<div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop/flume-1.5.0-bin/conf# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">Info: Sourcing environment configuration script/home/hadoop/flume-1.5.0-bin/conf/flume-env.sh</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-api-1.7.5.jar from classpath</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">Info: Including Hadoop libraries found via (/home/hadoop/hadoop-2.2.0/bin/hadoop)for HDFS access</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">-08-10 10:43:25,112 (New I/Oworker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar from classpath</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">...</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">-08-10 10:43:25,112 (New I/Oworker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">-08-10 10:43:25,112 (New I/Oworker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected.</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">-08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64 hello world }</span></div>
2)案例2:Spool
<div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources = r1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks = k1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.channels = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Describe/configure the source</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.type= spooldir</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.fileHeader =true</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.spoolDir =/home/hadoop/flume-1.5.0-bin/logs</span></div># Describe the sink a1.sinks.k1.type= logger <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels.c1.transactionCapacity = 100</span></div># Use a channel which buffers events in memory a1.channels.c1.type= memory a1.channels.c1.capacity = 1000 # Bind the source and sink to the channel <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks.k1.channel = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.channels = c1</span></div>
b)启动flume agent a1
<div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources = r1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks = k1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.channels = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Describe/configure the source</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.type= exec</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Describe the sink</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.command= tail -F /home/hadoop/flume-1.5.0-bin/log_exec_tail</span></div>a1.sinks.k1.type= logger <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels.c1.transactionCapacity = 100</span></div># Use a channel which buffers events in memory a1.channels.c1.type= memory a1.channels.c1.capacity = 1000 <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks.k1.channel = c1</span></div># Bind the source and sink to the channel <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.channels = c1</span></div>
b)启动flume agent a1
a)创建agent配置文件
<div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources = r1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks = k1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.type= org.apache.flume.source.http.HTTPSource</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Describe/configure the source</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.port = 8888</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;"># Use a channel which buffers events in memory</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.channels = c1</span></div># Describe the sink <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels.c1.transactionCapacity = 100</span></div>a1.sinks.k1.type= logger a1.channels.c1.type= memory <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.channels.c1.capacity = 1000</span></div># Bind the source and sink to the channel <div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sinks.k1.channel = c1</span></div><div style="text-align: left;"><span style="font-family: Arial, Helvetica, sans-serif;">a1.sources.r1.channels = c1</span></div>
b)启动flume agent a1
root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console
/
1
2
3
4
5
6
7
8
9
10
11
|
08/10 11:49:59 INFO node.Application: Starting Channel c1 /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started /08/10 11:49:59 INFO node.Application: Starting Sink k1 /08/10 11:49:59 INFO node.Application: Starting Source r1 /08/10 11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog /08/10 11:49:59 INFO mortbay.log: jetty-6.1.26 /08/10 11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888 /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started /08/10 12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79 idoall.org_body } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = hdfs
a1.sinks.k1.channel = c1 a1.sinks.k1.hdfs.path = hdfs: //m1 :9000 /user/flume/syslogtcp a1.sinks.k1.hdfs.filePrefix = Syslog a1.sinks.k1.hdfs.round = true a1.sinks.k1.hdfs.roundValue = 10 a1.sinks.k1.hdfs.roundUnit = minute # Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf
-n a1 -Dflume.root.logger=INFO,console |
c)测试产生syslog
1
|
root@m1: /home/hadoop # echo "hello idoall flume -> hadoop testing one" | nc localhost 5140 |
d)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
/08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started /08/10 12:20:39 INFO node.Application: Starting Sink k1 /08/10 12:20:39 INFO node.Application: Starting Source r1 /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SINK, name: k1: Successfully registered new MBean. /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: k1 started /08/10 12:20:39 INFO source.SyslogTcpSource: Syslog TCP Source starting... /08/10 12:21:46 WARN source.SyslogUtils: Event created from Invalid Syslog data. /08/10 12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false /08/10 12:21:49 INFO hdfs.BucketWriter: Creatinghdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp /08/10 12:22:20 INFO hdfs.BucketWriter: Closinghdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp /08/10 12:22:20 INFO hdfs.BucketWriter: Close tries incremented /08/10 12:22:20 INFO hdfs.BucketWriter: Renaminghdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504.tmp tohdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504 /08/10 12:22:20 INFO hdfs.HDFSEventSink: Writer callback called. |
e)在m1上再打开一个窗口,去hadoop上检查文件是否生成
1
2
3
4
5
|
root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp Found 1 items
-rw-r--r-- 3 root supergroup 155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog .1407644509504 root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504 SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5555 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = file_roll
a1.sinks.k1.sink.directory = /home/hadoop/flume-1 .5.0-bin /logs # Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf
-n a1 -Dflume.root.logger=INFO,console |
c)测试产生log
1
2
|
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5555 root@m1: /home/hadoop # echo "hello idoall.org syslog 2" | nc localhost 5555 |
d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件
1
2
3
4
5
6
7
8
9
10
|
root@m1:/home/hadoop# ll /home/hadoop/flume-1.5.0-bin/logs 总用量 272 drwxr-xr-x 3 root root 4096 Aug 10 12:50 ./ drwxr-xr-x 9 root root 4096 Aug 10 10:59 ../ -rw-r--r-- 1 root root 50 Aug 10 12:49 1407646164782-1 -rw-r--r-- 1 root root 0 Aug 10 12:49 1407646164782-2 -rw-r--r-- 1 root root 0 Aug 10 12:50 1407646164782-3 root@m1:/home/hadoop# cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2 hello idoall.org syslog hello idoall.org syslog 2 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2 # Describe/configure the source a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = replicating
# Describe the sink a1.sinks.k1. type = avro
a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1
a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro
a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2
a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory
a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建replicating_Channel_Selector_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source a1.sources.r1. type = avro
a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger
# Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)在m1上将2个配置文件复制到m2上一份
1
2
|
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf
root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf<br> |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf
-n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
-n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生syslog
1
|
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140 |
f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:
1
2
3
4
5
6
7
8
|
/08/10 14:08:18 INFO ipc.NettyServer: Connection to /192.168.1.51:46844 disconnected. /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] OPEN /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35873 /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] OPEN /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46858 /08/10 14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2 # Describe/configure the source a1.sources.r1. type = org.apache.flume. source .http.HTTPSource a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = multiplexing
a1.sources.r1.selector.header = type #映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。 a1.sources.r1.selector.mapping.baidu = c1 a1.sources.r1.selector.mapping.ali = c2 a1.sources.r1.selector.default = c1 # Describe the sink a1.sinks.k1. type = avro
a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1
a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro
a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2
a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory
a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建Multiplexing_Channel_Selector_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source a1.sources.r1. type = avro
a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger
# Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
1
2
|
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
-n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
-n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生syslog
1
|
root@m1: /home/hadoop # curl -X POST -d ‘[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]‘http://localhost:5140
&& curl -X POST -d ‘[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]‘http://localhost:5140 && curl -X POST -d ‘[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]‘http://localhost:5140 |
f)在m1的sink窗口,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
14/08/10 14:32:21 INFO node.Application: Starting Sink k1 14/08/10 14:32:21 INFO node.Application: Starting Source r1 14/08/10 14:32:21 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 14:32:21 INFO source.AvroSource: Avro source r1 started. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] OPEN 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35916 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] OPEN 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46945 14/08/10 14:34:11 INFO sink.LoggerSink: Event: { headers:{type=baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31 idoall_TEST1 } 14/08/10 14:34:57 INFO sink.LoggerSink: Event: { headers:{type=qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33 idoall_TEST3 } |
g)在m2的sink窗口,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
14/08/10 14:32:27 INFO node.Application: Starting Sink k1 14/08/10 14:32:27 INFO node.Application: Starting Source r1 14/08/10 14:32:27 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 14:32:27 INFO source.AvroSource: Avro source r1 started. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] OPEN 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38104 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] OPEN 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48599 14/08/10 14:34:33 INFO sink.LoggerSink: Event: { headers:{type=ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32 idoall_TEST2 } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2 #这个是配置failover的关键,需要有一个sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 #处理的类型是failover a1.sinkgroups.g1.processor. type = failover
#优先级,数字越大优先级越高,每个sink的优先级必须不相同 a1.sinkgroups.g1.processor.priority.k1 = 5 a1.sinkgroups.g1.processor.priority.k2 = 10 #设置为10秒,当然可以根据你的实际状况更改成更快或者很慢 a1.sinkgroups.g1.processor.maxpenalty = 10000 # Describe/configure the source a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = replicating
# Describe the sink a1.sinks.k1. type = avro
a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1
a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro
a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2
a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory
a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建Flume_Sink_Processors_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source a1.sources.r1. type = avro
a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger
# Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
1
2
|
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
-n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
-n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生log
1
|
root@m1: /home/hadoop # echo "idoall.org test1 failover" | nc localhost 5140 |
f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:
1
2
3
4
5
|
14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:48692 disconnected. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] OPEN 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48704 14/08/10 15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } |
g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:
1
|
root@m1: /home/hadoop # echo "idoall.org test2 failover" | nc localhost 5140 |
h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:
1
2
3
4
5
6
|
14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:47036 disconnected. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] OPEN 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:47048 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } |
i)我们再在m2的sink窗口中,启动sink:
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
-n a1 -Dflume.root.logger=INFO,console |
j)输入两批测试数据:
1
|
root@m1: /home/hadoop # echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140 |
k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
14/08/10 15:09:47 INFO node.Application: Starting Sink k1 14/08/10 15:09:47 INFO node.Application: Starting Source r1 14/08/10 15:09:47 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 15:09:47 INFO source.AvroSource: Avro source r1 started. 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] OPEN 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48741 14/08/10 15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] OPEN 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38166 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 } 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1
#这个是配置Load balancing的关键,需要有一个sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 a1.sinkgroups.g1.processor. type = load_balance
a1.sinkgroups.g1.processor.backoff = true a1.sinkgroups.g1.processor.selector = round_robin # Describe/configure the source a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = avro
a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1
a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro
a1.sinks.k2.channel = c1 a1.sinks.k2. hostname = m2
a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 |
b)在m1创建Load_balancing_Sink_Processors_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source a1.sources.r1. type = avro
a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger
# Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
1
2
|
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
-n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
-n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上
1
2
3
4
|
root@m1: /home/hadoop # echo "idoall.org test1" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test2" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test3" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test4" | nc localhost 5140 |
f)在m1的sink窗口,可以看到以下信息:
1
2
|
14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14/08/10 15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 } |
g)在m2的sink窗口,可以看到以下信息:
1
2
|
14/08/10 15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 } |
1
2
3
4
5
6
7
8
|
cp
/home/hadoop/hbase-0 .96.2-hadoop2 /lib/protobuf-java-2 .5.0.jar /home/hadoop/flume-1 .5.0-bin /lib cp
/home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-client-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp
/home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-common-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp
/home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-protocol-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp
/home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-server-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp
/home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop2-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp
/home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib @@@ cp
/home/hadoop/hbase-0 .96.2-hadoop2 /lib/htrace-core-2 .04.jar /home/hadoop/flume-1 .5.0-bin /lib |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = logger
a1.sinks.k1. type = hbase
a1.sinks.k1.table = test_idoall_org a1.sinks.k1.columnFamily = name a1.sinks.k1.column = idoall a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer a1.sinks.k1.channel = memoryChannel # Use a channel which buffers events in memory a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
e)启动flume agent
1
|
/home/hadoop/flume-1 .5.0-bin /bin/flume-ng agent -c . -f
/home/hadoop/flume-1 .5.0-bin /conf/hbase_simple .conf -n a1 -Dflume.root.logger=INFO,console |
f)测试产生syslog
1
|
root@m1: /home/hadoop # echo "hello idoall.org from flume" | nc localhost 5140 |
g)这时登录到hbase中,可以发现新数据已经插入
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
root@m1: /home/hadoop # /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell 2014-08-10 16:09:48,984 INFO [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available HBase Shell; enter ‘help<RETURN>‘
for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014 hbase(main):001:0> list TABLE SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in
[jar: file : /home/hadoop/hbase-0 .96.2-hadoop2 /lib/slf4j-log4j12-1 .6.4.jar! /org/slf4j/impl/StaticLoggerBinder .class] SLF4J: Found binding in
[jar: file : /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar! /org/slf4j/impl/StaticLoggerBinder .class] SLF4J: See http: //www .slf4j.org /codes .html #multiple_bindings
for an explanation. hbase2hive_idoall hive2hbase_idoall test_idoall_org 3 row(s)
in 2.6880 seconds
=> [ "hbase2hive_idoall" , "hive2hbase_idoall" , "test_idoall_org" ] hbase(main):002:0> scan "test_idoall_org" ROW COLUMN+CELL 10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue 1 row(s)
in 0.0550 seconds
hbase(main):003:0> scan "test_idoall_org" ROW COLUMN+CELL 10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue 1407658495588-XbQCOZrKK8-0 column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume 2 row(s)
in 0.0200 seconds
hbase(main):004:0> quit |
经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。
标签:
原文地址:http://blog.csdn.net/a2615381/article/details/51425693