码迷,mamicode.com
首页 > 编程语言 > 详细

匈牙利算法

时间:2016-05-21 21:36:24      阅读:137      评论:0      收藏:0      [点我收藏+]

标签:

 

首先,匈牙利算法是用来求二分图的最大匹配的,它的核心问题就是找增广路径。匈牙利算法的时间复杂度为O(VE),其中

V为二分图左边的顶点数,E为二分图中边的数目。


现在我们来看看增广路径有哪些性质:

(1)有奇数条边。

(2)起点在二分图的左半边,终点在右半边。(存疑?)

(3)路径上的点一定是一个在左半边,一个在右半边,交替出现。

(4)整条路径上没有重复的点。

(5)起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。

(6)路径上的所有第奇数条边都不在原匹配中,所有第偶数条边都出现在原匹配中。

(7)最后,也是最重要的一条,把增广路径上的所有第奇数条边加入到原匹配中去,并把增广路径中的所有第偶数条边从原

匹配中删除(这个操作称为增广路径的取反),则新的匹配数就比原匹配数增加了1个。

摘自:http://blog.csdn.net/acdreamers/article/details/8621130

 

匈牙利算法详解 byvoid博客

https://www.byvoid.com/blog/hungary/

匈牙利算法

标签:

原文地址:http://www.cnblogs.com/cumulonimbus/p/5515598.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!