码迷,mamicode.com
首页 > Web开发 > 详细

大型网站技术架构 学习总结三(信息加密技术及密钥安全管理)

时间:2016-05-24 15:23:14      阅读:267      评论:0      收藏:0      [点我收藏+]

标签:

1、单向散列加密

     单向散列加密是通过对不同输入长度的信息进行散列计算,得到固定长度的输出,单向的(不可逆)。

     用户的密码通过此加密将密文存在数据库当中,登录时根据用户输入的密码进行加密后与数据库中的密文进行对比。

     这样即使平台数据库被“拖库”,也不会造成用户的密码泄漏。

     代表:MD5算法     SHA算法

 MD5功能:
    输入任意长度的信息,经过处理,输出为128位的信息(数字指纹);
    不同的输入得到的不同的结果(唯一性);
    根据128位的输出结果不可能反推出输入的信息(不可逆); 

    MD5属不属于加密算法:
    认为不属于的人是因为他们觉得不能从密文(散列值)反过来得到原文,即没有解密算法,所以这部分人认为MD5只能属于算法,不能称为加密算法;
    认为属于的人是因为他们觉得经过MD5处理后看不到原文,即已经将原文加密,所以认为MD5属于加密算法;我个人支持后者。

    MD5用途:
    1、防止被篡改
    比如发送一个电子文档,发送前,我先得到MD5的输出结果a。然后在对方收到电子文档后,对方也得到一个MD5的输出结果b。如果a与b一样就代表中途未被篡改。2)比如我提供文件下载,为了防止不法分子在安装程序中添加木马,我可以在网站上公布由安装文件得到的MD5输出结果。3)SVN在检测文件是否在CheckOut后被修改过,也是用到了MD5.


   
2、防止直接看到明文
    现在很多网站在数据库存储用户的密码的时候都是存储用户密码的MD5值。这样就算不法分子得到数据库的用户密码的MD5值,也无法知道用户的密码(其实这样是不安全的,后面我会提到)。(比如在UNIX系统中用户的密码就是以MD5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成MD5值,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。)

    3、防止抵赖(数字签名):
    这需要一个第三方认证机构。例如A写了一个文件,认证机构对此文件用MD5算法产生摘要信息并做好记录。若以后A说这文件不是他写的,权威机构只需对此文件重新产生摘要信息,然后跟记录在册的摘要信息进行比对,相同的话,就证明是A写的了。这就是所谓的“数字签名”。

技术分享



2、对称加密

     对称加密指加密和解密使用的密钥是同一个密钥,代表:DES算法,RC算法。速度快,适合大量数据加密。

技术分享


3、非对称加密

     非对称加密,加密与解密使用的密钥不是同一密钥,对中一个对外公开,称为公钥,另一个只有所有者知道,称为私钥。

     用公钥加密的信息只有私钥才能解开,反之,用私钥加密的信息只有公钥才能解开(签名验签)。

     代表:RSA算法。速度慢,适合少量数据加密。对称加密算法不能实现签名,因此签名只能非对称算法






以下源自:http://www.cnblogs.com/JCSU/articles/2803598.html

数字签名是什么?

1.

技术分享

鲍勃有两把钥匙,一把是公钥,另一把是私钥。

2.

技术分享

鲍勃把公钥送给他的朋友们----帕蒂、道格、苏珊----每人一把。

3.

技术分享

苏珊给鲍勃写信,写完后用鲍勃的公钥加密,达到保密的效果。

4.

技术分享

鲍勃收信后,用私钥解密,看到信件内容。

5.

技术分享

鲍勃给苏珊回信,写完后用Hash函数,生成信件的摘要(digest)。

6.

技术分享

然后,鲍勃使用私钥,对这个摘要加密,生成"数字签名"(signature)。

7.

技术分享

鲍勃将这个签名,附在信件下面,一起发给苏珊。

8.

技术分享

苏珊收信后,取下数字签名,用鲍勃的公钥解密,得到信件的摘要。由此证明,这封信确实是鲍勃发出的。

9.

技术分享

苏珊再对信件本身使用Hash函数,将得到的结果,与上一步得到的摘要进行对比。如果两者一致,就证明这封信未被修改过。

10.

技术分享

复杂的情况出现了。道格想欺骗苏珊,他偷偷使用了苏珊的电脑,用自己的公钥换走了鲍勃的公钥。因此,他就可以冒充鲍勃,写信给苏珊。

11.

技术分享

苏珊发现,自己无法确定公钥是否真的属于鲍勃。她想到了一个办法,要求鲍勃去找"证书中心"(certificate authority,简称CA),为公钥做认证。证书中心用自己的私钥,对鲍勃的公钥和一些相关信息一起加密,生成"数字证书"(Digital Certificate)。

12.

技术分享

鲍勃拿到数字证书以后,就可以放心了。以后再给苏珊写信,只要在签名的同时,再附上数字证书就行了。

13.

技术分享

苏珊收信后,用CA的公钥解开数字证书,就可以拿到鲍勃真实的公钥了,然后就能证明"数字签名"是否真的是鲍勃签的。

14.

技术分享

下面,我们看一个应用"数字证书"的实例:https协议。这个协议主要用于网页加密。

15.

技术分享

首先,客户端向服务器发出加密请求。

16.

技术分享

服务器用自己的私钥加密网页以后,连同本身的数字证书,一起发送给客户端。

17.

技术分享

客户端(浏览器)的"证书管理器",有"受信任的根证书颁发机构"列表。客户端会根据这张列表,查看解开数字证书的公钥是否在列表之内。

18.

技术分享

如果数字证书记载的网址,与你正在浏览的网址不一致,就说明这张证书可能被冒用,浏览器会发出警告。

19.

技术分享

如果这张数字证书不是由受信任的机构颁发的,浏览器会发出另一种警告。

20.

技术分享

数字证书如果是可靠的,客户端就可以使用证书中的服务器公钥,对信息进行加密,然后与服务器交换加密信息。

 

----------------------------

在签名的过程中,有一点很关键,收到数据的一方,需要自己保管好公钥,但是要知道每一个发送方都有一个公钥,那么接收数据的人需要保存非常多的公钥,这根本就管理不过来。并且本地保存的公钥有可能被篡改替换,无从发现。怎么解决这一问题了?由一个统一的证书管理机构来管理所有需要发送数据方的公钥,对公钥进行认证和加密。这个机构也就是我们常说的CA。认证加密后的公钥,即是证书,又称为CA证书,证书中包含了很多信息,最重要的是申请者的公钥。

CA机构在给公钥加密时,用的是一个统一的密钥对,在加密公钥时,用的是其中的私钥。这样,申请者拿到证书后,在发送数据时,用自己的私钥生成签名,将签名、证书和发送内容一起发给对方,对方拿到了证书后,需要对证书解密以获取到证书中的公钥,解密需要用到CA机构的”统一密钥对“中的公钥,这个公钥也就是我们常说的CA根证书,通常需要我们到证书颁发机构去下载并安装到相应的收取数据的客户端,如浏览器上面。这个公钥只需要安装一次。有了这个公钥之后,就可以解密证书,拿到发送方的公钥,然后解密发送方发过来的签名,获取摘要,重新计算摘要,作对比,以验证数据内容的完整性。

 

总结:

(1)信息 + HASH = 摘要    摘要 + 私钥 = 数字签名(给收方做对比用的,验证收发内容是否一致)

(2)公钥 + 相关信息 + CA私钥 = 数字证书(验证发送者是否正确,是可信任的公钥)

 

用于我发保密信息给你之前,你得让我相信真的是“你”让我“这么做”的。

 

(1)、对称加密算法

常用的算法包括:
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

1、加密方和解密方使用同一个密钥。
2、加密解密的速度比较快,适合数据比较长时的使用。
3、密钥传输的过程不安全,且容易被破解,密钥管理也比较麻烦。
4、加密算法:DES(Data Encryption Standard)、3DES、AES(Advanced Encryption Standard,支持128、192、256、512位密钥的加密)、Blowfish。
5、加密工具:openssl、gpg(pgp工具)

 

(2)、非对称加密算法

RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。
ECC和RSA相比,在许多方面都有对绝对的优势,主要体现在以下方面:
抗攻击性强。相同的密钥长度,其抗攻击性要强很多倍。
计算量小,处理速度快。ECC总的速度比RSA、DSA要快得多。
存储空间占用小。ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,意味着它所占的存贮空间要小得多。这对于加密算法在IC卡上的应用具有特别重要的意义。
带宽要求低。当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时ECC带宽要求却低得多。带宽要求低使ECC在无线网络领域具有广泛的应用前景。

1、每个用户拥用一对密钥加密:公钥和私钥。
2、公钥加密,私钥解密;私钥加密,公钥解密。
3、公钥传输的过程不安全,易被窃取和替换。
4、由于公钥使用的密钥长度非常长,所以公钥加密速度非常慢,一般不使用其去加密。
5、某一个用户用其私钥加密,其他用户用其公钥解密,实现数字签名的作用。
6、公钥加密的另一个作用是实现密钥交换。
7、加密和签名算法:RSA、ELGamal。
8、公钥签名算法:DSA。
9、加密工具:gpg、openssl

 

由于非对称加密算法的运行速度比对称加密算法的速度慢很多,当我们需要加密大量的数据时,建议采用对称加密算法,提高加解密速度。
对称加密算法不能实现签名,因此签名只能非对称算法。
由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。
在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。

 

(3)、单向加密(散列算法)

散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。
单向散列函数一般用于产生消息摘要,密钥加密等,常见的有:
1、MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法,非可逆,相同的明文产生相同的密文。
2、SHA(Secure Hash Algorithm):可以对任意长度的数据运算生成一个160位的数值;
SHA-1与MD5的比较
因为二者均由MD4导出,SHA-1和MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
1、对强行供给的安全性:最显著和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD5是2128数量级的操作,而对SHA-1则是2160数量级的操作。这样,SHA-1对强行攻击有更大的强度。
2、对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。
3、速度:在相同的硬件上,SHA-1的运行速度比MD5慢。

1、特征:雪崩效应、定长输出和不可逆。
2、作用是:确保数据的完整性。
3、加密算法:md5(标准密钥长度128位)、sha1(标准密钥长度160位)、md4、CRC-32
4、加密工具:md5sum、sha1sum、openssl dgst。
5、计算某个文件的hash值,例如:md5sum/shalsum FileName,openssl dgst –md5/-sha1




大型网站技术架构 学习总结三(信息加密技术及密钥安全管理)

标签:

原文地址:http://blog.csdn.net/zhengchao1991/article/details/51488564

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!