码迷,mamicode.com
首页 > 编程语言 > 详细

多进程、多线程处理文件对比

时间:2016-05-27 18:31:33      阅读:199      评论:0      收藏:0      [点我收藏+]

标签:

分别通过多进程、多线程方式处理文件,将结果保存到一个list中:

1.多进程:

import multiprocessing,cjson,os,collections
from multiprocessing import Process,freeze_support,Manager,Pool,Queue

def handlefile(lock,rst,fp):
    lst_tmp=[]
    #print type(rst)
    with open(fp,rb) as fo:
        for line in fo:
            line = cjson.decode(line)
            lst_tmp.append(line[s-ip])
    #print collections.Counter(lst_tmp)
    lock.acquire()
    rst.extend(lst_tmp)
    lock.release()


if __name__ == __main__:
    lock = Manager().Lock()
    rst = Manager().list()

    starttime = datetime.datetime.now()
    f1 = e:\\logtest\\iis__20160519105745.json
    f2 = e:\\logtest\\iis__20160519105816.json
    f3 = e:\\logtest\\iis_IDC-ExFE01_20160524134616.json
    f4 = e:\\logtest\\iis_IDC-ExFE01_20160524134955.json
    f5 = e:\\logtest\\iis_IDC-ExFE01_20160524134616.json
    f6 = e:\\logtest\\iis_IDC-ExFE01_20160524134955.json
    files = [f1,f2,f3,f4,f5,f6]
    p=Pool()
    for file in files:
        p.apply_async(handlefile,args=(lock,rst,file))
    p.close()
    p.join()

    print collections.Counter(rst)

    print (datetime.datetime.now() - starttime).total_seconds() #耗时16.631s

 

2.多线程:

import threading
global rst
rst = []
def query(mutex,fp):
    lst_tmp=[]
    #print type(rst)
    with open(fp,rb) as fo:
        for line in fo:
            line = cjson.decode(line)
            lst_tmp.append(line[s-ip])
    #print collections.Counter(lst_tmp)
    mutex.acquire()
    rst.extend(lst_tmp)
    mutex.release()


if __name__ == __main__:
    threads=[]
    mutex=threading.Lock()
    starttime = datetime.datetime.now()
    f1 = e:\\logtest\\iis__20160519105745.json
    f2 = e:\\logtest\\iis__20160519105816.json
    f3 = e:\\logtest\\iis_IDC-ExFE01_20160524134616.json
    f4 = e:\\logtest\\iis_IDC-ExFE01_20160524134955.json
    f5 = e:\\logtest\\iis_IDC-ExFE01_20160524134616.json
    f6 = e:\\logtest\\iis_IDC-ExFE01_20160524134955.json
    files = [f1,f2,f3,f4,f5,f6]

    for filepath in files:
        t = threading.Thread(target=query,args=(mutex,filepath))
        t.setDaemon(True)
        t.start()
        threads.append(t)
    for t in threads:
        t.join()

    print collections.Counter(rst)

    print (datetime.datetime.now() - starttime).total_seconds() #耗时4.425s

 

结论:多进程和多线程在分别处理每个文件,将结果写入各自tmp list中,多线程耗时2.468s,多线程耗时4.24s,多进程优于多线程(进程数量未控制,默认CPU核心数量)。

        但当多线程各结果写入到共享变量list()时,多线程严重耗时较久,多线程共计耗时4.425s,多进程耗时16.631s。多进程中的共享变量效率低下。

 

多进程、多线程处理文件对比

标签:

原文地址:http://www.cnblogs.com/dreamer-fish/p/5535561.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!