标签:
来自 维基百科-快速排序<https://zh.wikipedia.org/wiki/%E5%BF%AB%E9%80%9F%E6%8E%92%E5%BA%8F>
快速排序时间复杂度:
从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。
在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。
另外一个方法是为T(n)设立一个递归关系式,也就是需要排序大小为n的数列所需要的时间。在最好的情况下,因为一个单独的快速排序调用牵涉了O(n)的工作,加上对n/2大小之数列的两个递归调用,这个关系式可以是:
T(n) = O(n) + 2T(n/2)
解决这种关系式型态的标准数学归纳法技巧告诉我们T(n) = O(n log n)。
事实上,并不需要把数列如此精确地分区;即使如果每个基准值将元素分开为99%在一边和1%在另一边,调用的深度仍然限制在100log n,所以全部运行时间依然是O(n log n)。
然而,在最坏的情况是,两子数列拥有大各为1和n-1,且调用树(call tree)变成为一个n个嵌套(nested)调用的线性连串(chain)。第i次调用作了O(n-i)的工作量,且递归关系式为:
T(n) = O(n) + T(1) + T(n - 1) = O(n) + T(n - 1)
这与插入排序和选择排序有相同的关系式,以及它被解为T(n) = O(n2)。
来自 <https://zh.wikipedia.org/wiki/%E5%BF%AB%E9%80%9F%E6%8E%92%E5%BA%8F>
快速排序空间复杂度:
被快速排序所使用的空间,依照使用的版本而定。使用原地(in-place)分区的快速排序版本,在任何递归调用前,仅会使用固定的額外空間。然而,如果需要产生O(log n)嵌套递归调用,它需要在他们每一个存储一个固定数量的信息。因为最好的情况最多需要O(log n)次的嵌套递归调用,所以它需要O(log n)的空间。最坏情况下需要O(n)次嵌套递归调用,因此需要O(n)的空间。
然而我们在这里省略一些小的细节。如果我们考虑排序任意很长的数列,我们必须要记住我们的变量像是left和right,不再被认为是占据固定的空间;也需要O(log n)对原来一个n项的数列作索引。因为我们在每一个堆栈框架中都有像这些的变量,实际上快速排序在最好跟平均的情况下,需要O(log2 n)空间的比特数,以及最坏情况下O(n log n)的空间。然而,这并不会太可怕,因为如果一个数列大部分都是不同的元素,那么数列本身也会占据O(n log n)的空间字节。
非原地版本的快速排序,在它的任何递归调用前需要使用O(n)空间。在最好的情况下,它的空间仍然限制在O(n),因为递归的每一阶中,使用与上一次所使用最多空间的一半,且平均为O(2n)。
它的最坏情况是很恐怖的,需要O(n2)空间,远比数列本身还多。如果这些数列元素本身自己不是固定的大小,这个问题会变得更大;举例来说,如果数列元素的大部分都是不同的,每一个将会需要大约O(log n)为原来存储,导致最好情况是O(n log n)和最坏情况是O(n2 log n)的空间需求。
来自 <https://zh.wikipedia.org/wiki/%E5%BF%AB%E9%80%9F%E6%8E%92%E5%BA%8F>
标签:
原文地址:http://www.cnblogs.com/yanspecial/p/5551030.html