码迷,mamicode.com
首页 > 编程语言 > 详细

Python多进程multiprocessing使用示例

时间:2016-06-10 15:00:02      阅读:371      评论:0      收藏:0      [点我收藏+]

标签:

mutilprocess简介

像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。

技术分享
import multiprocessing

def worker(num):
    """thread worker function"""
    print Worker:, num
    return

if __name__ == __main__:
    jobs = []
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(i,))
        jobs.append(p)
        p.start()
简单的创建进程

确定当前的进程,即是给进程命名,方便标识区分,跟踪

技术分享
import multiprocessing
import time

def worker():
    name = multiprocessing.current_process().name
    print name, Starting
    time.sleep(2)
    print name, Exiting

def my_service():
    name = multiprocessing.current_process().name
    print name, Starting
    time.sleep(3)
    print name, Exiting

if __name__ == __main__:
    service = multiprocessing.Process(name=my_service,
                                      target=my_service)
    worker_1 = multiprocessing.Process(name=worker 1,
                                       target=worker)
    worker_2 = multiprocessing.Process(target=worker) # default name

    worker_1.start()
    worker_2.start()
    service.start()
View Code

守护进程就是不阻挡主程序退出,自己干自己的 mutilprocess.setDaemon(True)就这句等待守护进程退出,要加上join,join可以传入浮点数值,等待n久就不等了

技术分享
import multiprocessing
import time
import sys

def daemon():
    name = multiprocessing.current_process().name
    print Starting:, name
    time.sleep(2)
    print Exiting :, name

def non_daemon():
    name = multiprocessing.current_process().name
    print Starting:, name
    print Exiting :, name

if __name__ == __main__:
    d = multiprocessing.Process(name=daemon,
                                target=daemon)
    d.daemon = True

    n = multiprocessing.Process(name=non-daemon,
                                target=non_daemon)
    n.daemon = False

    d.start()
    n.start()

    d.join(1)
    print d.is_alive(), d.is_alive()
    n.join()
守护进程

最好使用 poison pill,强制的使用terminate()注意 terminate之后要join,使其可以更新状态

技术分享
import multiprocessing
import time

def slow_worker():
    print Starting worker
    time.sleep(0.1)
    print Finished worker

if __name__ == __main__:
    p = multiprocessing.Process(target=slow_worker)
    print BEFORE:, p, p.is_alive()

    p.start()
    print DURING:, p, p.is_alive()

    p.terminate()
    print TERMINATED:, p, p.is_alive()

    p.join()
    print JOINED:, p, p.is_alive()
终止进程
  1. == 0 未生成任何错误  
  2. 0 进程有一个错误,并以该错误码退出
  3. < 0 进程由一个-1 * exitcode信号结束
技术分享
import multiprocessing
import sys
import time

def exit_error():
    sys.exit(1)

def exit_ok():
    return

def return_value():
    return 1

def raises():
    raise RuntimeError(There was an error!)

def terminated():
    time.sleep(3)

if __name__ == __main__:
    jobs = []
    for f in [exit_error, exit_ok, return_value, raises, terminated]:
        print Starting process for, f.func_name
        j = multiprocessing.Process(target=f, name=f.func_name)
        jobs.append(j)
        j.start()

    jobs[-1].terminate()

    for j in jobs:
        j.join()
        print %15s.exitcode = %s % (j.name, j.exitcode)
进程的退出状态

方便的调试,可以用logging

技术分享
import multiprocessing
import logging
import sys

def worker():
    print Doing some work
    sys.stdout.flush()

if __name__ == __main__:
    multiprocessing.log_to_stderr()
    logger = multiprocessing.get_logger()
    logger.setLevel(logging.INFO)
    p = multiprocessing.Process(target=worker)
    p.start()
    p.join()
日志

利用class来创建进程,定制子类

技术分享
import multiprocessing

class Worker(multiprocessing.Process):

    def run(self):
        print In %s % self.name
        return

if __name__ == __main__:
    jobs = []
    for i in range(5):
        p = Worker()
        jobs.append(p)
        p.start()
    for j in jobs:
        j.join()
派生进程
技术分享
import multiprocessing

class MyFancyClass(object):

    def __init__(self, name):
        self.name = name

    def do_something(self):
        proc_name = multiprocessing.current_process().name
        print Doing something fancy in %s for %s! %             (proc_name, self.name)

def worker(q):
    obj = q.get()
    obj.do_something()

if __name__ == __main__:
    queue = multiprocessing.Queue()

    p = multiprocessing.Process(target=worker, args=(queue,))
    p.start()

    queue.put(MyFancyClass(Fancy Dan))

    # Wait for the worker to finish
    queue.close()
    queue.join_thread()
    p.join()

import multiprocessing
import time

class Consumer(multiprocessing.Process):

    def __init__(self, task_queue, result_queue):
        multiprocessing.Process.__init__(self)
        self.task_queue = task_queue
        self.result_queue = result_queue

    def run(self):
        proc_name = self.name
        while True:
            next_task = self.task_queue.get()
            if next_task is None:
                # Poison pill means shutdown
                print %s: Exiting % proc_name
                self.task_queue.task_done()
                break
            print %s: %s % (proc_name, next_task)
            answer = next_task()
            self.task_queue.task_done()
            self.result_queue.put(answer)
        return

class Task(object):
    def __init__(self, a, b):
        self.a = a
        self.b = b
    def __call__(self):
        time.sleep(0.1) # pretend to take some time to do the work
        return %s * %s = %s % (self.a, self.b, self.a * self.b)
    def __str__(self):
        return %s * %s % (self.a, self.b)

if __name__ == __main__:
    # Establish communication queues
    tasks = multiprocessing.JoinableQueue()
    results = multiprocessing.Queue()

    # Start consumers
    num_consumers = multiprocessing.cpu_count() * 2
    print Creating %d consumers % num_consumers
    consumers = [ Consumer(tasks, results)
                  for i in xrange(num_consumers) ]
    for w in consumers:
        w.start()

    # Enqueue jobs
    num_jobs = 10
    for i in xrange(num_jobs):
        tasks.put(Task(i, i))

    # Add a poison pill for each consumer
    for i in xrange(num_consumers):
        tasks.put(None)

    # Wait for all of the tasks to finish
    tasks.join()

    # Start printing results
    while num_jobs:
        result = results.get()
        print Result:, result
        num_jobs -= 1
python进程间传递消息

Event提供一种简单的方法,可以在进程间传递状态信息。事件可以切换设置和未设置状态。通过使用一个可选的超时值,时间对象的用户可以等待其状态从未设置变为设置。

技术分享
import multiprocessing
import time

def wait_for_event(e):
    """Wait for the event to be set before doing anything"""
    print wait_for_event: starting
    e.wait()
    print wait_for_event: e.is_set()->, e.is_set()

def wait_for_event_timeout(e, t):
    """Wait t seconds and then timeout"""
    print wait_for_event_timeout: starting
    e.wait(t)
    print wait_for_event_timeout: e.is_set()->, e.is_set()

if __name__ == __main__:
    e = multiprocessing.Event()
    w1 = multiprocessing.Process(name=block, 
                                 target=wait_for_event,
                                 args=(e,))
    w1.start()

    w2 = multiprocessing.Process(name=nonblock, 
                                 target=wait_for_event_timeout, 
                                 args=(e, 2))
    w2.start()

    print main: waiting before calling Event.set()
    time.sleep(3)
    e.set()
    print main: event is set
进程间信号传递

Python多进程,一般的情况是Queue来传递。

技术分享
from multiprocessing import Process, Queue

def f(q):
    q.put([42, None, hello])

if __name__ == __main__:
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print q.get()    # prints "[42, None, ‘hello‘]"
    p.join()
Queue
技术分享
import Queue
import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, q):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.q = q
    def run(self):
        print "Starting " + self.name
        process_data(self.name, self.q)
        print "Exiting " + self.name

def process_data(threadName, q):
    while not exitFlag:
        queueLock.acquire()
        if not workQueue.empty():
            data = q.get()
            queueLock.release()
            print "%s processing %s" % (threadName, data)
        else:
            queueLock.release()
        time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1

# Create new threads
for tName in threadList:
    thread = myThread(threadID, tName, workQueue)
    thread.start()
    threads.append(thread)
    threadID += 1

# Fill the queue
queueLock.acquire()
for word in nameList:
    workQueue.put(word)
queueLock.release()

# Wait for queue to empty
while not workQueue.empty():
    pass

# Notify threads it‘s time to exit
exitFlag = 1

# Wait for all threads to complete
for t in threads:
    t.join()
print "Exiting Main Thread"
多线程优先队列Queue

多进程使用Queue通信的例子

技术分享
import time
from multiprocessing import Process,Queue

MSG_QUEUE = Queue(5)

def startA(msgQueue):
    while True:
        if msgQueue.empty() > 0:
            print (queue is empty %d % (msgQueue.qsize()))
        else:
            msg = msgQueue.get()
            print( get msg %s % (msg,))
        time.sleep(1)

def startB(msgQueue):
    while True:
        msgQueue.put(hello world)
        print( put hello world queue size is %d % (msgQueue.qsize(),))
        time.sleep(3)

if __name__ == __main__:
    processA = Process(target=startA,args=(MSG_QUEUE,))
    processB = Process(target=startB,args=(MSG_QUEUE,))

    processA.start()
    print( processA start..)
View Code

主进程定义了一个Queue类型的变量,并作为Process的args参数传给子进程processA和processB,两个进程一个向队列中写数据,一个读数据。

Python多进程multiprocessing使用示例

标签:

原文地址:http://www.cnblogs.com/IPYQ/p/5573628.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!