码迷,mamicode.com
首页 > 移动开发 > 详细

华为OJ平台——放苹果(典型整数划分问题)

时间:2016-06-17 16:59:56      阅读:625      评论:0      收藏:0      [点我收藏+]

标签:

题目描述:

输入m,n,分别表示苹果数与盘子的总数,要求输出苹果放在n个盘子的方法总数(注意511和151是一种情况),例如输入 7 3 输出8((7),(6,1),(5,2),(4,3),(5,1,1),(4,2,1),(3,3,1),(3,2,2))

思路:

最典型的解法整数分解,例如给定n个苹果,把苹果放到k个盘子里,允许有的盘子为空,不妨设 f(n , k ) (边缘条件为当 n = 0 ,1时,返回1,当 k = 1 时,返回1)表示结果,分析一下可以知道有两种放的方法,一种是有空盘,一种是没空盘。

没空盘的情况可以知道每个盘子里至少有一个苹果,也就是说这种情况的总数为 f ( n-k , k ) 。

而有空盘的情况,我们可以假设最后一个盘子为空,则这种情况的总数为f ( n , k-1 ) (无需考虑多个盘子为空的情况,递归时必然会出现)

所以状态转移方程为 f ( n , k ) = f ( n-k , k ) + f ( n , k-1 )

技术分享
 1 import java.util.Scanner;
 2 
 3 /**
 4  * 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,
 5  * 问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
 6  */
 7 public class PlayApples {
 8 
 9     public static void main(String[] args) {
10         //输入读取参数
11         Scanner cin = new Scanner(System.in) ;        
12         int apples = cin.nextInt() ;
13         int planes = cin.nextInt() ;
14         cin.close();
15         
16         System.out.println(count(apples,planes)) ;
17 
18     }
19 
20     /**
21      * 最典型的整数分解
22      * 例如给定n个苹果,把苹果放到k个盘子里,允许有的盘子为空, 不妨设 f(m , n ) 
23      * (边缘条件为当 m == 0 ,1时,返回1,当 n == 1 时,返回1)表示结果,
24      * 分析一下可以知道有两中放的方法,一种是有空盘,一种是没空盘,
25      * 没空盘的情况可以知道每个盘子里至少有一个苹果,也就是说这种情况的总数为 f ( n-k , k ) 。
26      * 而有空盘的情况,我们可以假设最后一个盘子为空,则这种情况的总数为f ( n , k-1 ) (无需考虑多个盘子为空的情况,递归时必然会出现)
27      * 所以状态转移方程为 f ( n , k ) = f  ( n-k , k ) +  f ( n , k-1 )。
28      * 
29      * 而如果是不允许有空盘子的情况,则可以由上面的情况推出,
30      * 设 d ( n , k ) 表示把n个苹果放到k个盘子里,不允许有空盘子的方法总数,
31      * 则有f ( n , k ) =  Σ (  1 <= i <= k ) d ( n , i ) 
32      * 所以 d ( n , k ) = f ( n , k ) - f ( n , k-1 )
33      * 
34      * @param m  苹果数量
35      * @param n  盘子数量
36      * @return
37      */
38     private static int count(int m, int n) {
39         //n为0 是错误的,故返回0
40         if(n == 0){
41             return 0 ;
42         }
43         //m == 0,1时和 n == 1时均只有一种放法
44         if(m == 0 || n == 1 || m == 1 ){
45             return 1 ;
46         }else if(m < 0){
47             //m < 0 时,也是错误的情形,所以返回0
48             return 0 ;
49         }else{
50             //递归调用
51             return count(m-n,n) + count(m,n-1) ;
52         }    
53     }
54 }
Code

 

扩展:

如果是不允许有空盘子的情况,则可以由上面的情况推出,设 d ( n , k ) 表示把n个苹果放到k个盘子里,不允许有空盘子的方法总数,则有

f ( n , k ) = Σ ( 1 <= i <= k ) d ( n , i ) 所以 d ( n , k ) = f ( n , k ) - f ( n , k-1 )

华为OJ平台——放苹果(典型整数划分问题)

标签:

原文地址:http://www.cnblogs.com/mukekeheart/p/5594225.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!