标签:
标签:
杂谈 |
KNN算法是机器学习里面比较简单的一个分类算法了,整体思想比较简单:计算一个点A与其他所有点之间的距离,取出与该点最近的k个点,然后统计这k个点里面所属分类比例最大的,则点A属于该分类。这样讲可能还有点迷糊,下面用一个例子来说明一下:
电影名称 | 打斗次数 | 接吻次数 | 电影类型 |
California Man
|
3 | 104 | Romance |
He’s Not Really into Dudes
|
2 | 100 | Romance |
Beautiful Woman
|
1 | 81 | Romance |
Kevin Longblade
|
101 | 10 | Action |
Robo Slayer 3000
|
99 | 5 | Action |
Amped II
|
98 | 2 | Action |
未知 | 18 | 90 | Unknown |
简单说一下这个数据的意思:这里用打斗次数和接吻次数来界定电影类型,如上,接吻多的是Romance类型的,而打斗多的是动作电影。还有一部名字未知(这里名字未知是为了防止能从名字中猜出电影类型),打斗次数为18次,接吻次数为90次的电影,它到底属于哪种类型的电影呢?
KNN算法要做的,就是先用打斗次数和接吻次数作为电影的坐标,然后计算其他六部电影与未知电影之间的距离,取得前K个距离最近的电影,然后统计这k个距离最近的电影里,属于哪种类型的电影最多,比如Action最多,则说明未知的这部电影属于动作片类型。
在实际使用中,有几个问题是值得注意的:K值的选取,选多大合适呢?计算两者间距离,用哪种距离会更好呢(欧几里得距离等等几个)?计算量太大怎么办?假设样本中,类型分布非常不均,比如Action的电影有200部,但是Romance的电影只有20部,这样计算起来,即使不是Action的电影,也会因为Action的样本太多,导致k个最近邻居里有不少Action的电影,这样该怎么办呢?
没有万能的算法,只有在一定使用环境中最优的算法,所以,要懂得合适利用算法。
1
2
3
4
5
6
7
|
import numpy as np from sklearn import neighbors knn = neighbors.KNeighborsClassifier() #取得knn分类器 data = np.array([[ 3 , 104 ],[ 2 , 100 ],[ 1 , 81 ],[ 101 , 10 ],[ 99 , 5 ],[ 98 , 2 ]]) labels = np.array([ 1 , 1 , 1 , 2 , 2 , 2 ]) knn.fit(data,labels) #导入数据进行训练,data对应着打斗次数和接吻次数,而labels则是对应Romance和Action,因为这里只能接受整数类型的数组 knn.predict([ 18 , 90 ])
首先,我用labels数组中的1和2代表Romance和Aciton,因为sklearn不接受字符数组作为标志,只能用1,2这样的int型数据来表示,后面处理可以将1和2映射到Romance和Action上来。 fit则是用data和labels进行训练,data对应的是打斗次数和接吻次数构成的向量,称之为特征向量。labels则是这个数据所代表的电影所属的类型。 predict则是进行预测了,将未知电影的特征向量代入,则能分析出该未知电影所属的类型。这里的结果是1,也就是该未知电影属于Romance。 |
标签:
原文地址:http://www.cnblogs.com/diegodu/p/5594460.html