码迷,mamicode.com
首页 > 编程语言 > 详细

<NLP with python>笔记:二

时间:2016-06-19 21:21:34      阅读:234      评论:0      收藏:0      [点我收藏+]

标签:

Ch1 Language Processing with Python

1.1 Computing with Language: Texts and Words

  将文本看作是待处理的原始数据。

Searching Text

  nltk.text.Text.concordance(self,word):输出文本中某个word的索引;

  nltk.text.Text.similar(self,word):输出文本中与指定词出现在相同地方的word;

  nltk.text.Text.common_contexts(self,words):找出文本中,words中的word同时出现的语句;

  nltk.text.Text.dispersion_plot(self,words):显示文本中,words中的不用word出现的位置;(!!!bug)

Counting Voabulary

  前面的例子中,最明显的不同在于词汇使用的不同。

  token:包含标点符号和单词。

  词汇:文本中的不同单词的个数。

  nltk.text.Text.count(self,word):统计文本中指定word出现的次数;

1.2 A Closer Look at Python: Texts as Lists of Words

Lists

  将文本看作是单词和标点符号序列。python中使用list来存储;索引/分片/可变对象

Variables

  变量=表达式。python的变量赋值

Strings

  索引/分片/不可变对象

1.3 Computing with Language: Simple Statistics

Frequency Distributions

  频率分布:文本中每一个词汇出现的频率。

  nltk.probability.FreqDist(self,sample=None):返回频率分布对象(继承了dict的特性,并封装了很多函数)。

  FreqDist对象封装了很多函数,如plot函数,N,B等,hapaxed用于返回之出现一次的单词。

Fine-Gained(颗粒选择) Selection of Words

  列表解析式:来选择单词长度足够长的单词。[w for w in v if f(v)] 

Collocations and Bigrams(固定搭配和二元-gram)

  nltk.util.bigrams((sequence):从sequence中生成所有的二元搭配,返回iter对象

  固定搭配:出现频次高的bigram词语。

  nltk.text.Text.collocations(self,num=20):先对文本使用bigram得到二元词组,然后进行统计返回出现频次最高的bigram。

Counting Other Things

  FreqDist()的其他函数

1.4 Back to Python:Making Decisions and Taking Control

Conditionals

  < > != ==

1.5 Automatic Natural Lauguage Understanding

Word Sense Disambiguation(单词歧义去除)/Pronoun Resolution(代词消解)/Generating Language Output(问答系统,机器翻译)/Machine Transaltion(机器翻译)/对话系统

1.6 Summary

 

 

  

 

 

  

 

<NLP with python>笔记:二

标签:

原文地址:http://www.cnblogs.com/Mscer/p/5598108.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!