码迷,mamicode.com
首页 > 编程语言 > 详细

R语言并行化基础与提高

时间:2016-06-21 07:38:31      阅读:208      评论:0      收藏:0      [点我收藏+]

标签:

本文将介绍R中的并行计算,并给出了一些常见的陷进以及避免它们的小技巧。
使用并行计算的原因就是因为程序运行时间太长。大部分程序都是可以并行化的,它们大部分都是Embarrassingly parallel。这里介绍几种可以并行化的方法:

  • Bootstrapping
  • 交叉验证(Cross-validation)
  • (Multivariate Imputation by Chained Equations ,MICE)相关介绍:R语言中的缺失值处理
  • 拟合多元回归方程

学习lapply是关键

没有早点学习lapply是我的遗憾之一。这函数即优美又简单:它只需要一个参数(一个vector或list),和一个以该参数为输入的函数,最后返回一个列表。

> lapply(1:3, function(x) c(x, x^2, x^3))
[[1]]
 [1] 1 1 1

[[2]]
 [1] 2 4 8

[[3]]
 [1] 3 9 27

你还可以添加额外的参数:

> lapply(1:3/3, round, digits=3)
[[1]]
[1] 0.333

[[2]]
[1] 0.667

[[3]]
[1] 1

当每个元素都是独立地计算时,这个任务就是 Embarrassingly parallel的。当你学习完使用lapply之后,你会发现并行化你的代码就像喝水一样简单。

parallel

使用 parallel包,首先要初始化一个集群,这个集群的数量最好是你CPU核数-1。如果一台8核的电脑建立了数量为8的集群,那你的CPU就干不了其他事情了。所以可以这样启动一个集群:

library(parallel)

# Calculate the number of cores
no_cores <- detectCores() - 1

# Initiate cluster
cl <- makeCluster(no_cores)

现在只需要使用并行化版本的lapply,parLapply就可以了

parLapply(cl, 2:4,
          function(exponent)
            2^exponent)
[[1]]
[1] 4

[[2]]
[1] 8

[[3]]
[1] 16

当我们结束后,要记得关闭集群,否则你电脑的内存会始终被R占用

stopCluster(cl)

变量作用域

在Mac/Linux中你可以使用 makeCluster(no_core, type="FORK")这一选项从而当你并行运行的时候可以包含所有环境变量。
在Windows中由于使用的是Parallel Socket Cluster (PSOCK),所以每个集群只会加载base包,所以你运行时要指定加载特定的包或变量:

cl<-makeCluster(no_cores)

base <- 2
clusterExport(cl, "base")
parLapply(cl, 
          2:4, 
          function(exponent) 
            base^exponent)

stopCluster(cl)

[[1]]
[1] 4

[[2]]
[1] 8

[[3]]
[1] 16

注意到你需要用clusterExport(cl, "base")把base这一个变量加载到集群当中。如果你在函数中使用了一些其他的包就要使用clusterEvalQ加载进去,比如说,使用rms包,那么就用clusterEvalQ(cl, library(rms))。要注意的是,在clusterExport 加载某些变量后,这些变量的任何变化都会被忽略:

cl<-makeCluster(no_cores)
clusterExport(cl, "base")
base <- 4
# Run
parLapply(cl, 
          2:4, 
          function(exponent) 
            base^exponent)

# Finish
stopCluster(cl)
[[1]]
[1] 4

[[2]]
[1] 8

[[3]]
[1] 16

使用parSapply

如果你想程序返回一个向量或者矩阵。而不是一个列表,那么就应该使用sapply,他同样也有并行版本parSapply:

> parSapply(cl, 2:4, 
          function(exponent) 
            base^exponent)
[1]  4  8 16

输出矩阵并显示行名和列名(因此才需要使用as.character

> parSapply(cl, as.character(2:4), 
          function(exponent){
            x <- as.numeric(exponent)
            c(base = base^x, self = x^x)
          })
2  3   4
base 4  8  16
self 4 27 256

foreach

设计foreach包的思想可能想要创建一个lapply和for循环的标准,初始化的过程有些不同,你需要register注册集群:

library(foreach)
library(doParallel)

cl<-makeCluster(no_cores)
registerDoParallel(cl)

要记得最后要结束集群(不是用stopCluster()):

stopImplicitCluster()

foreach函数可以使用参数.combine控制你汇总结果的方法:

> foreach(exponent = 2:4, 
        .combine = c)  %dopar%  
  base^exponent
  [1]  4  8 16
> foreach(exponent = 2:4, 
        .combine = rbind)  %dopar%  
  base^exponent
    [,1]
result.1    4
result.2    8
result.3   16
foreach(exponent = 2:4, 
        .combine = list,
        .multicombine = TRUE)  %dopar%  
  base^exponent
[[1]]
[1] 4

[[2]]
[1] 8

[[3]]
[1] 16

注意到最后list的combine方法是默认的。在这个例子中用到一个.multicombine参数,他可以帮助你避免嵌套列表。比如说list(list(result.1, result.2), result.3) :

> foreach(exponent = 2:4, 
        .combine = list)  %dopar%  
  base^exponent
[[1]]
[[1]][[1]]
[1] 4

[[1]][[2]]
[1] 8


[[2]]
[1] 16

变量作用域

在foreach中,变量作用域有些不同,它会自动加载本地的环境到函数中:

> base <- 2
> cl<-makeCluster(2)
> registerDoParallel(cl)
> foreach(exponent = 2:4, 
        .combine = c)  %dopar%  
  base^exponent
stopCluster(cl)
 [1]  4  8 16

但是,对于父环境的变量则不会加载,以下这个例子就会抛出错误:

test <- function (exponent) {
  foreach(exponent = 2:4, 
          .combine = c)  %dopar%  
    base^exponent
}
test()

 Error in base^exponent : task 1 failed - "object ‘base‘ not found" 

为解决这个问题你可以使用.export这个参数而不需要使用clusterExport。注意的是,他可以加载最终版本的变量,在函数运行前,变量都是可以改变的:

base <- 2
cl<-makeCluster(2)
registerDoParallel(cl)

base <- 4
test <- function (exponent) {
  foreach(exponent = 2:4, 
          .combine = c,
          .export = "base")  %dopar%  
    base^exponent
}
test()

stopCluster(cl)

 [1]  4  8 16

类似的你可以使用.packages参数来加载包,比如说:.packages = c("rms", "mice")

使用Fork还是sock?

我在windows上做了很多分析,也习惯了使用PSOCK系统。对于使用其他系统的人要意识到这两个的区别:

  • FORK:”to divide in branches and go separate ways”
    系统:Unix/Mac (not Windows)
    环境: 所有
  • PSOCK:并行socket集群
    系统: All (including Windows)
    环境: 空

内存控制

如果你不打算使用windows的话,建议你尝试FORK模式,它可以实现内存共享,节省你的内存。
PSOCK:

library(pryr) # Used for memory analyses
cl<-makeCluster(no_cores)
clusterExport(cl, "a")
clusterEvalQ(cl, library(pryr))
parSapply(cl, X = 1:10, function(x) {address(a)}) == address(a)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

FORK :

cl<-makeCluster(no_cores, type="FORK")
parSapply(cl, X = 1:10, function(x) address(a)) == address(a)
 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

你不需要花费太多时间去配置你的环境,有趣的是,你不需要担心变量冲突:

b <- 0
parSapply(cl, X = 1:10, function(x) {b <- b + 1; b})
# [1] 1 1 1 1 1 1 1 1 1 1
parSapply(cl, X = 1:10, function(x) {b <<- b + 1; b})
# [1] 1 2 3 4 5 1 2 3 4 5
b
# [1] 0

调试

当你在并行环境中工作是,debug是很困难的,你不能使用browser/cat/print等函数来发现你的问题。

tryCatch-list方法

使用stop()函数这不是一个好方法,因为当你收到一个错误信息时,很可能这个错误信息你在很久之前写的,都快忘掉了,但是当你的程序跑了1,2天后,突然弹出这个错误,就只因为这一个错误,你的程序终止了,并把你之前的做的计算全部扔掉了,这是很讨厌的。为此,你可以尝试使用tryCatch去捕捉那些错误,从而使得出现错误后程序还能继续执行:

foreach(x=list(1, 2, "a"))  %dopar%  
{
  tryCatch({
    c(1/x, x, 2^x)
  }, error = function(e) return(paste0("The variable ‘", x, "‘", 
                                      " caused the error: ‘", e, "‘")))
}
[[1]]
[1] 1 1 2

[[2]]
[1] 0.5 2.0 4.0

[[3]]
[1] "The variable ‘a‘ caused the error: ‘Error in 1/x: non-numeric argument to binary operator\n‘"

这也正是我喜欢list的原因,它可以方便的将所有相关的数据输出,而不是只输出一个错误信息。这里有一个使用rbindlapply进行conbine的例子:

`out <- lapply(1:3, function(x) c(x, 2^x, x^x))
do.call(rbind, out)
 [,1] [,2] [,3]
[1,]    1    2    1
[2,]    2    4    4
[3,]    3    8   27

创建一个文件输出

当我们无法在控制台观测每个工作时,我们可以设置一个共享文件,让结果输出到文件当中,这是一个想当舒服的解决方案:

cl<-makeCluster(no_cores, outfile = "debug.txt")
registerDoParallel(cl)
foreach(x=list(1, 2, "a"))  %dopar%  
{
  print(x)
}
stopCluster(cl)
starting worker pid=7392 on localhost:11411 at 00:11:21.077
starting worker pid=7276 on localhost:11411 at 00:11:21.319
starting worker pid=7576 on localhost:11411 at 00:11:21.762
[1] 2]

[1] "a"

创建一个结点专用文件

一个或许更为有用的选择是创建一个结点专用的文件,如果你的数据集存在一些问题的时候,可以方便观测:

cl<-makeCluster(no_cores, outfile = "debug.txt")
registerDoParallel(cl)
foreach(x=list(1, 2, "a"))  %dopar%  
{
  cat(dput(x), file = paste0("debug_file_", x, ".txt"))
} 
stopCluster(cl)

partools

partools这个包有一个dbs()函数或许值得一看(使用非windows系统值得一看),他允许你联合多个终端给每个进程进行debug。

Caching

当做一个大型计算时,我强烈推荐使用一些缓存。这或许有多个原因你想要结束计算,但是要遗憾地浪费了计算的宝贵的时间。这里有一个包可以做缓存,R.cache,但是我发现自己写个函数来实现更加简单。你只需要嵌入digest包就可以。digest()函数是一个散列函数,把一个R对象输入进去可以输出一个md5值或sha1等从而得到一个唯一的key值,当你key匹配到你保存的cache中的key时,你就可以继续你的计算了,而不需要将算法重新运行,以下是一个使用例子:

cacheParallel <- function(){
  vars <- 1:2
  tmp <- clusterEvalQ(cl, 
                      library(digest))

  parSapply(cl, vars, function(var){
    fn <- function(a) a^2
    dg <- digest(list(fn, var))
    cache_fn <- 
      sprintf("Cache_%s.Rdata", 
              dg)
    if (file.exists(cache_fn)){
      load(cache_fn)
    }else{
      var <- fn(var); 
      Sys.sleep(5)
      save(var, file = cache_fn)
    }
    return(var)
  })
}

这个例子很显然在第二次运行的时候并没有启动Sys.sleep,而是检测到了你的cache文件,加载了上一次计算后的cache,你就不必再计算Sys.sleep了,因为在上一次已经计算过了。

system.time(out <- cacheParallel())
# user system elapsed
# 0.003 0.001 5.079
out
# [1] 1 4
system.time(out <- cacheParallel())
# user system elapsed
# 0.001 0.004 0.046
out
# [1] 1 4

# To clean up the files just do:
file.remove(list.files(pattern = "Cache.+\.Rdata"))

载入平衡

任务载入

需要注意的是,无论parLapply还是foreach都是一个包装(wrapper)的函数。这意味着他们不是直接执行并行计算的代码,而是依赖于其他函数实现的。在parLapply中的定义如下:

parLapply <- function (cl = NULL, X, fun, ...) 
{
    cl <- defaultCluster(cl)
    do.call(c, clusterApply(cl, x = splitList(X, length(cl)), 
        fun = lapply, fun, ...), quote = TRUE)
}

注意到splitList(X, length(cl)) ,他会将任务分割成多个部分,然后将他们发送到不同的集群中。如果你有很多cache或者存在一个任务比其他worker中的任务都大,那么在这个任务结束之前,其他提前结束的worker都会处于空闲状态。为了避免这一情况,你需要将你的任务尽量平均分配给每个worker。举个例子,你要计算优化神经网络的参数,这一过程你可以并行地以不同参数来训练神经网络,你应该将如下代码:

# From the nnet example
parLapply(cl, c(10, 20, 30, 40, 50), function(neurons) 
  nnet(ir[samp,], targets[samp,],
       size = neurons))

改为:

# From the nnet example
parLapply(cl, c(10, 50, 30, 40, 20), function(neurons) 
  nnet(ir[samp,], targets[samp,],
       size = neurons))

内存载入

在大数据的情况下使用并行计算会很快的出现问题。因为使用并行计算会极大的消耗内存,你必须要注意不要让你的R运行内存到达内存的上限,否则这将会导致崩溃或非常缓慢。使用Forks是一个控制内存上限的一个重要方法。Fork是通过内存共享来实现,而不需要额外的内存空间,这对性能的影响是很显著的(我的系统时16G内存,8核心):

> rm(list=ls())
> library(pryr)
> library(magrittr)
> a <- matrix(1, ncol=10^4*2, nrow=10^4)
> object_size(a)
1.6 GB
> system.time(mean(a))
   user  system elapsed 
  0.338   0.000   0.337 
> system.time(mean(a + 1))
   user  system elapsed 
  0.490   0.084   0.574 
> library(parallel)
> cl <- makeCluster(4, type = "PSOCK")
> system.time(clusterExport(cl, "a"))
   user  system elapsed 
  5.253   0.544   7.289 
> system.time(parSapply(cl, 1:8, 
                        function(x) mean(a + 1)))
   user  system elapsed 
  0.008   0.008   3.365 
> stopCluster(cl); gc();
> cl <- makeCluster(4, type = "FORK")
> system.time(parSapply(cl, 1:8, 
                        function(x) mean(a + 1)))
   user  system elapsed 
  0.009   0.008   3.123 
> stopCluster(cl)

FORKs可以让你并行化从而不用崩溃:

> cl <- makeCluster(8, type = "PSOCK")
> system.time(clusterExport(cl, "a"))
   user  system elapsed 
 10.576   1.263  15.877 
> system.time(parSapply(cl, 1:8, function(x) mean(a + 1)))
Error in checkForRemoteErrors(val) : 
  8 nodes produced errors; first error: cannot allocate vector of size 1.5 Gb
Timing stopped at: 0.004 0 0.389 
> stopCluster(cl)
> cl <- makeCluster(8, type = "FORK")
> system.time(parSapply(cl, 1:8, function(x) mean(a + 1)))
   user  system elapsed 
  0.014   0.016   3.735 
> stopCluster(cl)

当然,他并不能让你完全解放,如你所见,当我们创建一个中间变量时也是需要消耗内存的:

> a <- matrix(1, ncol=10^4*2.1, nrow=10^4)
> cl <- makeCluster(8, type = "FORK")
> parSapply(cl, 1:8, function(x) {
+   b <- a + 1
+   mean(b)
+   })
Error in unserialize(node$con) : error reading from connection

内存建议

  • 尽量使用rm()避免无用的变量
  • 尽量使用gc()释放内存。即使这在R中是自动执行的,但是当它没有及时执行,在一个并行计算的情况下,如果没有及时释放内存,那么它将不会将内存返回给操作系统,从而影响了其他worker的执行。
  • 通常并行化在大规模运算下很有用,但是,考虑到R中的并行化存在内存的初始化成本,所以考虑到内存的情况下,显然小规模的并行化可能会更有用。
  • 有时候在并行计算时,不断做缓存,当达到上限时,换回串行计算。
  • 你也可以手动的控制每个核所使用的内存数量,一个简单的方法就是:memory.limit()/memory.size() = max cores

其他建议

  • 一个常用的CPU核数检测函数:
max(1, detectCores() - 1)
  • 永远不要使用set.seed(),使用clusterSetRNGStream()来代替设置种子,如果你想重现结果。
  • 如果你有Nvidia 显卡,你可以尝试使用gputools 包进行GPU加速(警告:安装可能会很困难)
  • 当使用mice并行化时记得使用ibind()来合并项。

原文:How-to go parallel in R – basics + tips

作为分享主义者(sharism),本人所有互联网发布的图文均遵从CC版权,转载请保留作者信息并注明作者a358463121专栏:http://blog.csdn.net/a358463121,如果涉及源代码请注明GitHub地址:https://github.com/358463121/。商业使用请联系作者。

R语言并行化基础与提高

标签:

原文地址:http://blog.csdn.net/a358463121/article/details/51695054

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!