标签:
林炳文Evankaka原创作品。转载请注明出处http://blog.csdn.net/evankaka
摘要:本文主要讲了Java中BlockingQueue的源码
BlockingQueue是一个阻塞队列。在高并发场景是用得非常多的,在线程池中。如果运行线程数目大于核心线程数目时,也会尝试把新加入的线程放到一个BlockingQueue中去。队列的特性就是先进先出很容易理解,在java里头它的实现类主要有下图的几种,其中最常用到的是ArrayBlockingQueue、LinkedBlockingQueue及SynchronousQueue这三种,这三个也是今天主要讲的类。
它主要的方法有
BlockingQueue的核心方法:
1、放入数据
(1) add(object)
队列没满的话,放入成功。否则抛出异常。
(2)offer(object):
表示如果可能的话,将object加到BlockingQueue里,即如果BlockingQueue可以容纳,则返回true,否则返回false.(本方法不阻塞当前执行方法的线程)
(3)offer(E o, long timeout, TimeUnit unit)
可以设定等待的时间,如果在指定的时间内,还不能往队列中加入BlockingQueue,则返回失败。
(4)put(object)
把object加到BlockingQueue里,如果BlockQueue没有空间,则调用此方法的线程阻塞。直到BlockingQueue里面有空间再继续.
2、获取数据
(1)poll(time)
取走BlockingQueue里排在首位的对象,若不能立即取出,则可以等time参数规定的时间,取不到时返回null;
(2)poll(long timeout, TimeUnit unit)
从BlockingQueue取出一个队首的对象,如果在指定时间内,队列一旦有数据可取,则立即返回队列中的数据。否则知道时间超时还没有数据可取,返回失败。
(3)take()
取走BlockingQueue里排在首位的对象,若BlockingQueue为空,阻断进入等待状态直到BlockingQueue有新的数据被加入;
(4)drainTo()
一次性从BlockingQueue获取所有可用的数据对象(还可以指定获取数据的个数),通过该方法,可以提升获取数据效率;不需要多次分批加锁或释放锁。
一个基本数组的阻塞队列。可以设置列队的大小。
ArrayBlockingQueue的源码是比较简单的,下面是笔者抽取了一部分源码并加以注释。它的基本原理实际还是数组,只不过存、取、删时都要做队列是否满或空的判断。然后加锁访问。
package java.util.concurrent; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import java.util.AbstractQueue; import java.util.Collection; import java.util.Iterator; import java.util.NoSuchElementException; import java.lang.ref.WeakReference; import java.util.Spliterators; import java.util.Spliterator; public class ArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, java.io.Serializable { private static final long serialVersionUID = -817911632652898426L; /** 真正存入数据的数组*/ final Object[] items; /** take, poll, peek or remove的下一个索引 */ int takeIndex; /** put, offer, or add的下一个索引 */ int putIndex; /**队列中元素个数*/ int count; /**可重入锁 */ final ReentrantLock lock; /** 队列不为空的条件 */ private final Condition notEmpty; /** 队列未满的条件 */ private final Condition notFull; transient Itrs itrs = null; /** *当前元素个数-1 */ final int dec(int i) { return ((i == 0) ? items.length : i) - 1; } /** * 返回对应索引上的元素 */ @SuppressWarnings("unchecked") final E itemAt(int i) { return (E) items[i]; } /** * 非空检查 * * @param v the element */ private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); } /** * 元素放入队列,注意调用这个方法时都要先加锁 * */ private void enqueue(E x) { final Object[] items = this.items; items[putIndex] = x; if (++putIndex == items.length) putIndex = 0; count++;//当前拥有元素个数加1 notEmpty.signal();//有一个元素加入成功,那肯定队列不为空 } /** * 元素出队,注意调用这个方法时都要先加锁 * */ private E dequeue() { final Object[] items = this.items; @SuppressWarnings("unchecked") E x = (E) items[takeIndex]; items[takeIndex] = null; if (++takeIndex == items.length) takeIndex = 0; count--;/当前拥有元素个数减1 if (itrs != null) itrs.elementDequeued(); notFull.signal();//有一个元素取出成功,那肯定队列不满 return x; } /** * 指定删除索引上的元素 * */ void removeAt(final int removeIndex) { final Object[] items = this.items; if (removeIndex == takeIndex) { items[takeIndex] = null; if (++takeIndex == items.length) takeIndex = 0; count--; if (itrs != null) itrs.elementDequeued(); } else { final int putIndex = this.putIndex; for (int i = removeIndex;;) { int next = i + 1; if (next == items.length) next = 0; if (next != putIndex) { items[i] = items[next]; i = next; } else { items[i] = null; this.putIndex = i; break; } } count--; if (itrs != null) itrs.removedAt(removeIndex); } notFull.signal();//有一个元素删除成功,那肯定队列不满 } /** * * 构造函数,设置队列的初始容量 */ public ArrayBlockingQueue(int capacity) { this(capacity, false); } /** * 构造函数。capacity设置数组大小 ,fair设置是否为公平锁 * capacity and the specified access policy. */ public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = new Object[capacity]; lock = new ReentrantLock(fair);//是否为公平锁,如果是的话,那么先到的线程先获得锁对象。 //否则,由操作系统调度由哪个线程获得锁,一般为false,性能会比较高 notEmpty = lock.newCondition(); notFull = lock.newCondition(); } /** *构造函数,带有初始内容的队列 */ public ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c) { this(capacity, fair); final ReentrantLock lock = this.lock; lock.lock(); //要给数组设置内容,先上锁 try { int i = 0; try { for (E e : c) { checkNotNull(e); items[i++] = e;//依次拷贝内容 } } catch (ArrayIndexOutOfBoundsException ex) { throw new IllegalArgumentException(); } count = i; putIndex = (i == capacity) ? 0 : i;//如果putIndex大于数组大小 ,那么从0重新开始 } finally { lock.unlock();//最后一定要释放锁 } } /** * 添加一个元素,其实super.add里面调用了offer方法 */ public boolean add(E e) { return super.add(e); } /** *加入成功返回true,否则返回false * */ public boolean offer(E e) { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lock();//上锁 try { if (count == items.length) //超过数组的容量 return false; else { enqueue(e); //放入元素 return true; } } finally { lock.unlock(); } } /** * 如果队列已满的话,就会等待 */ public void put(E e) throws InterruptedException { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly();//和lock()方法的区别是让它在阻塞时也可抛出异常跳出 try { while (count == items.length) notFull.await(); //这里就是阻塞了,要注意。如果运行到这里,那么它会释放上面的锁,一直等到notify enqueue(e); } finally { lock.unlock(); } } /** * 带有超时时间的插入方法,unit表示是按秒、分、时哪一种 */ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { checkNotNull(e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) { if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos);//带有超时等待的阻塞方法 } enqueue(e);//入队 return true; } finally { lock.unlock(); } } //实现的方法,如果当前队列为空,返回null public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { return (count == 0) ? null : dequeue(); } finally { lock.unlock(); } } //实现的方法,如果当前队列为空,一直阻塞 public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) notEmpty.await();//队列为空,阻塞方法 return dequeue(); } finally { lock.unlock(); } } //带有超时时间的取元素方法,否则返回Null public E poll(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) { if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos);//超时等待 } return dequeue();//取得元素 } finally { lock.unlock(); } } //只是看一个队列最前面的元素,取出是不删除队列中的原来元素。队列为空时返回null public E peek() { final ReentrantLock lock = this.lock; lock.lock(); try { return itemAt(takeIndex); // 队列为空时返回null } finally { lock.unlock(); } } /** * 返回队列当前元素个数 * */ public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return count; } finally { lock.unlock(); } } /** * 返回当前队列再放入多少个元素就满队 */ public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return items.length - count; } finally { lock.unlock(); } } /** * 从队列中删除一个元素的方法。删除成功返回true,否则返回false */ public boolean remove(Object o) { if (o == null) return false; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { if (count > 0) { final int putIndex = this.putIndex; int i = takeIndex; do { if (o.equals(items[i])) { removeAt(i); //真正删除的方法 return true; } if (++i == items.length) i = 0; } while (i != putIndex);//一直不断的循环取出来做判断 } return false; } finally { lock.unlock(); } } /** * 是否包含一个元素 */ public boolean contains(Object o) { if (o == null) return false; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { if (count > 0) { final int putIndex = this.putIndex; int i = takeIndex; do { if (o.equals(items[i])) return true; if (++i == items.length) i = 0; } while (i != putIndex); } return false; } finally { lock.unlock(); } } /** * 清空队列 * */ public void clear() { final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int k = count; if (k > 0) { final int putIndex = this.putIndex; int i = takeIndex; do { items[i] = null; if (++i == items.length) i = 0; } while (i != putIndex); takeIndex = putIndex; count = 0; if (itrs != null) itrs.queueIsEmpty(); for (; k > 0 && lock.hasWaiters(notFull); k--) notFull.signal(); } } finally { lock.unlock(); } } /** * 取出所有元素到集合 */ public int drainTo(Collection<? super E> c) { return drainTo(c, Integer.MAX_VALUE); } /** * 取出所有元素到集合 */ public int drainTo(Collection<? super E> c, int maxElements) { checkNotNull(c); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int n = Math.min(maxElements, count); int take = takeIndex; int i = 0; try { while (i < n) { @SuppressWarnings("unchecked") E x = (E) items[take]; c.add(x); items[take] = null; if (++take == items.length) take = 0; i++; } return n; } finally { // Restore invariants even if c.add() threw if (i > 0) { count -= i; takeIndex = take; if (itrs != null) { if (count == 0) itrs.queueIsEmpty(); else if (i > take) itrs.takeIndexWrapped(); } for (; i > 0 && lock.hasWaiters(notFull); i--) notFull.signal(); } } } finally { lock.unlock(); } } }
接下来看看LinkedBlockingQueue的部分源码。
package java.util.concurrent; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import java.util.AbstractQueue; import java.util.Collection; import java.util.Iterator; import java.util.NoSuchElementException; import java.util.Spliterator; import java.util.Spliterators; import java.util.function.Consumer; public class LinkedBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, java.io.Serializable { private static final long serialVersionUID = -6903933977591709194L; /** * 链表节点类 */ static class Node<E> { E item; Node<E> next;//下一节点 Node(E x) { item = x; } } /** 链表大小 ,默认大小 是Integer.MAX_VALUE */ private final int capacity; /**当前队列中存放的元素个数,注意是原子类*/ private final AtomicInteger count = new AtomicInteger(); /** * 链表队列头节点 */ transient Node<E> head; /** * 链表队列尾节点 */ private transient Node<E> last; /** 取元素时的可重入锁 */ private final ReentrantLock takeLock = new ReentrantLock(); /**不为空条件*/ private final Condition notEmpty = takeLock.newCondition(); /**放元素是时的重入锁 */ private final ReentrantLock putLock = new ReentrantLock(); /** 不为满的条件 */ private final Condition notFull = putLock.newCondition(); /** * 不为空通知方法 */ private void signalNotEmpty() { final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { notEmpty.signal(); } finally { takeLock.unlock(); } } /** * 不为满通知方法 */ private void signalNotFull() { final ReentrantLock putLock = this.putLock; putLock.lock(); try { notFull.signal(); } finally { putLock.unlock(); } } /** * 进队 * * @param node the node */ private void enqueue(Node<E> node) { last = last.next = node; } /** * 出队 */ private E dequeue() { Node<E> h = head; Node<E> first = h.next; h.next = h; // help GC head = first; E x = first.item; first.item = null; return x; } /** * 取和入都上锁,此时无法取和放 */ void fullyLock() { putLock.lock(); takeLock.lock(); } /** * 释放锁 */ void fullyUnlock() { takeLock.unlock(); putLock.unlock(); } /** * 构造函数 */ public LinkedBlockingQueue() { this(Integer.MAX_VALUE); } /** * 构造函数 * */ public LinkedBlockingQueue(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; last = head = new Node<E>(null); } /** * 构造函数 */ public LinkedBlockingQueue(Collection<? extends E> c) { this(Integer.MAX_VALUE); final ReentrantLock putLock = this.putLock; putLock.lock(); //取得放入锁 try { int n = 0; for (E e : c) { if (e == null) throw new NullPointerException(); if (n == capacity) throw new IllegalStateException("Queue full"); enqueue(new Node<E>(e)); ++n; } count.set(n); } finally { putLock.unlock(); } } //阻塞等待放入 public void put(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); //取得放入锁 try { while (count.get() == capacity) {//队列已满 notFull.await(); } enqueue(node);//入队 c = count.getAndIncrement();//当前队列中元素个数加1 if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); } /** *带超时时间的阻塞等待放入,队列不满。放入成功返回true,否则返回fasle */ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); int c = -1; final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { while (count.get() == capacity) { if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } enqueue(new Node<E>(e)); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return true; } /** * 非阻塞放入。队列不满放入成功返回true,否则返回fasle */ public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0; } //阻塞等待取出元素 public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); try { while (count.get() == 0) { notEmpty.await(); } x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } //带有超时时间等待的取出元素 public E poll(long timeout, TimeUnit unit) throws InterruptedException { E x = null; int c = -1; long nanos = unit.toNanos(timeout); final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly();//等待时可抛出异常跳出 try { while (count.get() == 0) { if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos);//超时等待 } x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal();//不这空条件成立 } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } //取队头元素。没有的话返回null,有的话返回元素,并将队列中删除此元素 public E poll() { final AtomicInteger count = this.count; if (count.get() == 0) return null; E x = null; int c = -1; final ReentrantLock takeLock = this.takeLock; takeLock.lock();//获得取得锁 try { if (count.get() > 0) { x = dequeue();//出队 c = count.getAndDecrement();//当前队列中元素个数减去1 if (c > 1) notEmpty.signal();//不为空条件成功 } } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } //取队头元素,但不从队列中删除 ,没有的话返回null,不阻塞 public E peek() { if (count.get() == 0) return null; final ReentrantLock takeLock = this.takeLock; takeLock.lock();//获得取得锁 try { Node<E> first = head.next; if (first == null) return null; else return first.item; } finally { takeLock.unlock(); } } /** * 删除时要同时取得放入锁和取得锁 */ public boolean remove(Object o) { if (o == null) return false; fullyLock();//同时取得放入锁和取得锁 try { for (Node<E> trail = head, p = trail.next; p != null; trail = p, p = p.next) { if (o.equals(p.item)) { unlink(p, trail); return true; } } return false; } finally { fullyUnlock(); } } /** * 是否包含 */ public boolean contains(Object o) { if (o == null) return false; fullyLock();//同时取得放入锁和取得锁 try { for (Node<E> p = head.next; p != null; p = p.next) if (o.equals(p.item)) return true; return false; } finally { fullyUnlock(); } } }
1、ArrayBlockingQueue数据是放在一个数组中。LinkedBlockingQueue是放在一个Node节点中,构成一个链接。
2、ArrayBlockingQueue取元素和放元素都是同一个锁,而LinkedBlockingQueue有两个锁,一个放入锁,一个取得锁。分别对应放入元素和取得元素时的操作。这是由链表的结构所确定的。但是删除一个元素时,要同时获得放入锁和取得锁。
SynchronousQueue 这个队列实现了 BlockingQueue接口。该队列的特点
1.容量为0,无论何时 size方法总是返回0
2. put操作阻塞, 直到另外一个线程取走队列的元素。
3.take操作阻塞,直到另外的线程put某个元素到队列中。
4. 任何线程只能取得其他线程put进去的元素,而不会取到自己put进去的元素
public SynchronousQueue(boolean fair) { transferer = fair ? new TransferQueue() : new TransferStack(); }构造方法上接收boolean参数,表示这是一个公平的基于队列的排队模式,还是一个非公平的基于栈的排队模式。
Java并发编程与技术内幕:ArrayBlockingQueue、LinkedBlockingQueue及SynchronousQueue源码解析
标签:
原文地址:http://blog.csdn.net/evankaka/article/details/51706109