标签:数据结构;排序树
这篇文章介绍一下基本的排序树和它相应的实现代码
值得注意的是,这里讲的是最普通的排序树,不考虑平衡的问题,
它的增、删、查、改 时间复杂度都是 O(N) ~ O(log2(N) )
对结点的定义
template<class K, class V> struct BSTNode { BSTNode(const K &key, const V &value) :_key(key) , _value(value) , _left(NULL) , _right(NULL) {} K _key; V _value; BSTNode<K, V> *_left; BSTNode<K, V> *_right; };
排序树类的定义:
template<class K, class V> class BSTree { typedef BSTNode<K, V> Node; public: BSTree() :_root(NULL) {} ~BSTree() { _Destory(_root); } BSTree(const BSTree<K, V> &tree) { _root = _CreatHSTree(_root, tree._root); } BSTree operator=(const BSTree<K, V> &tree) { _Destory(_root); _root = _CreatHSTree(_root, tree._root); return *this; } public: bool Insert(const K&key, const V&value) { if (_root == NULL) { _root = new Node(key, value); return true; } Node *parent = NULL; Node *cur = _root; while (cur) { if (cur->_key < key) { parent = cur; cur = cur->_right; } else if (cur->_key > key) { parent = cur; cur = cur->_left; } else { return false; } } if (key > parent->_key) { parent->_right = new Node(key, value); } else { parent->_left = new Node(key, value); } return true; } bool Insert_R(const K &key, const V &value) { return _Insert_R(_root, key, value); } Node *Find_R(const K &key) { return _Find_R(_root, key); } Node *Find(const K &key) { Node *cur = _root; while (cur != NULL) { if (key == cur->_key) { return cur; } else if (key < cur->_key) { cur = cur->_left; } else if (key > cur->_key) { cur = cur->_right; } } return NULL; } /* 删除要考虑两种情况: 1、叶子结点(left 和 right 均为 NULL) 2、非叶子结点(left 和 right 有一个不是 NULL) 3、非叶子结点(left 和 right均不是 NULL) */ bool Remove(const K &key) { Node *prev = NULL; Node *cur = _root; //找到当前结点和它的父节点 while (cur) { if (key == cur->_key) { break; } else if (key < cur->_key) { prev = cur; cur = cur->_left; } else if (key > cur->_key) { prev = cur; cur = cur->_right; } } //情况1(叶子结点) if (cur->_left == NULL && cur->_right == NULL) { if (prev != NULL) //不是只剩一个结点的时候: { if (prev->_left == cur) { prev->_left = NULL; } else { prev->_right = NULL; } } delete cur; } //情况2(left 或 right 一个不是 NULL) else if (cur->_right == NULL) { if (prev == NULL) //处理根节点的情况 { _root = cur->_left; } else { if (prev->_left == cur) { prev->_left = cur->_left; } else { prev->_right = cur->_left; } delete cur; } } else if (cur->_left == NULL) { if (prev == NULL) //处理根节点的情况 { _root = cur->_right; } else { if (prev->_left == cur) { prev->_left = cur->_right; } else { prev->_right = cur->_right; } } delete cur; } //情况3(left 或 riht 都不是 NULL) else { Node *prev = cur; Node *FirstLeft = cur->_right; while (FirstLeft->_left) { prev = FirstLeft; FirstLeft = FirstLeft->_left; } Node *del = FirstLeft; cur->_key = del->_key; cur->_value = del->_value; if (prev->_left == FirstLeft) { prev->_left = FirstLeft->_right; } else { prev->_right = FirstLeft->_right; } delete del; } return true; } bool Remove_R(const K &key) { return _Remove_R(_root, key); } void InOrder() { InOrder_R(_root); } protected: Node* _CreatHSTree(Node *cur, Node *_cur) { if (_cur == NULL) { return NULL; } else { cur = new Node(_cur->_key, _cur->_value); } cur->_left = _CreatHSTree(cur->_left, _cur->_left); cur->_right = _CreatHSTree(cur->_right, _cur->_right); return cur; } void _Destory(Node *root) { if (root == NULL) { return; } _Destory(root->_left); _Destory(root->_right); delete root; } bool _Remove_R(Node *&root, const K &key) { if (root == NULL) { return false; } if (root->_key > key) { return _Remove_R(root->_left, key); } else if (root->_key < key) { return _Remove_R(root->_right, key); } else // 相等 { Node *del = root; if (root->_left == NULL) { root = root->_right; //这里的root是引用, //可能是上一层root->_left 或 root->_right } else if (root->_right == NULL) { root = root->_left; } else { Node *FirstLeft = root->_right; while (FirstLeft->_left) { FirstLeft = FirstLeft->_left; } std::swap(root->_key, FirstLeft->_key); std::swap(root->_value, FirstLeft->_value); return _Remove_R(root->_right, key); } delete del; } } bool _Insert_R(Node *&root, const K &key, const V &value) { if (root == NULL) { root = new Node(key, value); return true; } else if (key < root->_key) { _Insert_R(root->_left, key, value); } else if (key > root->_key) { _Insert_R(root->_right, key, value); } return false; } Node * _Find_R(Node *root, const K &key) { if (root == NULL) { return NULL; } if (key == root->_key) { return root; } if (key < root->_key) { return _Find_R(root->_left, key); } else if (key > root->_key) { return _Find_R(root->_right, key); } } void InOrder_R(Node *root) { if (root == NULL) { return; } InOrder_R(root->_left); cout << "key: " << root->_key << ", value: " << root->_value << endl; InOrder_R(root->_right); } protected: Node *_root; };
标签:数据结构;排序树
原文地址:http://zhweizhi.blog.51cto.com/10800691/1795220