码迷,mamicode.com
首页 > 编程语言 > 详细

Canny边缘检测算法

时间:2016-07-03 19:31:14      阅读:1562      评论:0      收藏:0      [点我收藏+]

标签:

作为对比,先看一下Sobel的原理:

Sobel的原理:

    索贝尔算子(Sobeloperator)是图像处理中的算子之一,主要用作边缘检测。在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量.

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像

 Canny边缘检测算子的matlab实现

    在以上例子中,如果以上的角度Θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。

    在边沿检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边沿的 ;另一个是检测垂直平边沿的。与 和 相比,Sobel算子对于象素的位置的影响做了加权,因此效果更好。

   Sobel算子另一种形式是各向同性Sobel(IsotropicSobel)算子,也有两个,一个是检测水平边沿的 ,另一个是检测垂直平边沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。由于建筑物图像的特殊性,我们可以发现,处理该类型图像轮廓时,并不需要对梯度方向进行运算,所以程序并没有给出各向同性Sobel算子的处理方法。

    由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。美中不足的是,Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的

=================黑丽丽的分割线啊,开始Canny吧=======

Canny的原理:

(1)图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置。

 (2)根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。

       (3)类似与Marr(LoG)边缘检测方法,也属于先平滑后求导数的方法 

Canny边缘检测算法

       step1:用高斯滤波器平滑图象;

       step2:用一阶偏导的有限差分来计算梯度的幅值和方向;

       step3:对梯度幅值进行非极大值抑制

       step4:用双阈值算法检测和连接边缘

<span style="color:#6600cc;"><strong>I=rgb2gray(imread('9.jpg'));
subplot(121);imshow(I);title('原图');
BW=edge(I,'canny');
subplot(122);imshow(BW);title('canny边缘处理');</strong></span>
技术分享技术分享

<strong><span style="font-size:18px;"><span style="color:#6600cc;">clear all;
close all;
clc;

img=rgb2gray(imread('9.jpg'));
subplot(241);imshow(img);title('原图')
[m n]=size(img);
img=double(img);

%%canny边缘检测的前两步相对不复杂,所以我就直接调用系统函数了
%%高斯滤波
w=fspecial('gaussian',[5 5]);
img=imfilter(img,w,'replicate');
subplot(242);imshow(uint8(img));title('高斯滤波')

%%sobel边缘检测
w=fspecial('sobel');
img_w=imfilter(img,w,'replicate');      %求横边缘
w=w';%转置
img_h=imfilter(img,w,'replicate');      %求竖边缘
img=sqrt(img_w.^2+img_h.^2);        %注意这里不是简单的求平均,而是平方和在开方。我曾经好长一段时间都搞错了
subplot(243);imshow(uint8(img));title('sobel边缘检测')


%%下面是非极大抑制
new_edge=zeros(m,n);
for i=2:m-1
    for j=2:n-1
        Mx=img_w(i,j);
        My=img_h(i,j);
        
        if My~=0
            o=atan(Mx/My);      %边缘的法线弧度
        elseif My==0 && Mx>0
            o=pi/2;
        else
            o=-pi/2;            
        end
        
        %Mx处用My和img进行插值
        adds=get_coords(o);      %边缘像素法线一侧求得的两点坐标,插值需要       
        M1=My*img(i+adds(2),j+adds(1))+(Mx-My)*img(i+adds(4),j+adds(3));   %插值后得到的像素,用此像素和当前像素比较 
        adds=get_coords(o+pi);%边缘法线另一侧求得的两点坐标,插值需要
        M2=My*img(i+adds(2),j+adds(1))+(Mx-My)*img(i+adds(4),j+adds(3));   %另一侧插值得到的像素,同样和当前像素比较
        
        isbigger=(Mx*img(i,j)>M1)*(Mx*img(i,j)>=M2)+(Mx*img(i,j)<M1)*(Mx*img(i,j)<=M2); %如果当前点比两边点都大置1
        
        if isbigger
           new_edge(i,j)=img(i,j); 
        end        
    end
end
subplot(244);imshow(uint8(new_edge));title('非极大抑制')


%%下面是滞后阈值处理
up=120;     %上阈值
low=100;    %下阈值
set(0,'RecursionLimit',10000);  %设置最大递归深度
for i=1:m
    for j=1:n
      if new_edge(i,j)>up &&new_edge(i,j)~=255  %判断上阈值
            new_edge(i,j)=255;
            new_edge=connect(new_edge,i,j,low);
      end
    end
end

subplot(245);imshow(new_edge==255);title('滞后阈值处理')

</span></span></strong><pre name="code" class="plain"><span style="color:#009900;">function nedge=connect(nedge,y,x,low)       %种子定位后的连通分析
    neighbour=[-1 -1;-1 0;-1 1;0 -1;0 1;1 -1;1 0;1 1];  %八连通搜寻
    [m n]=size(nedge);
    for k=1:8
        yy=y+neighbour(k,1);
        xx=x+neighbour(k,2);
        if yy>=1 &&yy<=m &&xx>=1 && xx<=n  
            if nedge(yy,xx)>=low && nedge(yy,xx)~=255   %判断下阈值
                nedge(yy,xx)=255;
                nedge=connect(nedge,yy,xx,low);
            end
        end        
    end 

end</span>

<span style="color:#3333ff;">function re=get_coords(angle)       %angle是边缘法线角度,返回法线前后两点
    sigma=0.000000001;
    x1=ceil(cos(angle+pi/8)*sqrt(2)-0.5-sigma);
    y1=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);
    x2=ceil(cos(angle-pi/8)*sqrt(2)-0.5-sigma);
    y2=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);
    re=[x1 y1 x2 y2];

end</span>


技术分享



Canny边缘检测算法

标签:

原文地址:http://blog.csdn.net/baidu_21578557/article/details/51813101

(0)
(1)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!