码迷,mamicode.com
首页 > 数据库 > 详细

Mongodb数据库的介绍

时间:2016-07-05 17:02:14      阅读:279      评论:0      收藏:0      [点我收藏+]

标签:

  MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。

1与关系型数据库相比,MongoDB的优点:

弱一致性(最终一致),更能保证用户的访问速度:

举例来说,在传统的关系型数据库中,一个COUNT类型的操作会锁定数据集,这样可以保证得到当前情况下的精确值。这在某些情况下,例 如通过ATM查看账户信息的时候很重要,但对于Wordnik来说,数据是不断更新和增长的,这种精确的保证几乎没有任何意义,反而会产生很大的延 迟。他们需要的是一个大约的数字以及更快的处理速度。

但某些情况下MongoDB会锁住数据库。如果此时正有数百个请求,则它们会堆积起来,造成许多问题。我们使用了下面的优化方式来避免锁定:

每次更新前,我们会先查询记录。查询操作会将对象放入内存,于是更新则会尽可能的迅速。在主/从部署方案中,从节点可以使用“-pretouch”参数运行,这也可以得到相同的效果。

使用多个mongod进程。我们根据访问模式将数据库拆分成多个进程。

文档结构的存储方式,能够更便捷的获取数据。

对于一个层级式的数据结构来说,如果要将这样的数据使用扁平式的,表状的结构来保存数据,这无论是在查询还是获取数据时都十分困难。

举例1

就拿一个字典项来说,虽然并不十分复杂,但还是会关系到定义词性发音或是引用等内容。大部分工程师会将这种模型使用关系型数据库 中的主键和外键表现出来,但把它看作一个文档而不是一系列有关系的表岂不更好?使用 “dictionary.definition.partOfSpeech=‘noun‘”来查询也比表之间一系列复杂(往往代价也很高)的连接查询方便 且快速。

举例2:在一个关系型数据库中,一篇博客(包含文章内容、评论、评论的投票)会被打散在多张数据表中。在MongoDB中,能用一个文档来表示一篇博客, 评论与投票作为文档数组,放在正文主文档中。这样数据更易于管理,消除了传统关系型数据库中影响性能和水平扩展性的“JOIN”操作。

CODE↓

> db.blogposts.save({ title : "My First Post", author: {name : "Jane", id :1},

  comments : [{ by: "Abe", text: "First" },

              { by : "Ada", text : "Good post" }]

})

> db.blogposts.find( { "author.name" : "Jane" } )

> db.blogposts.findOne({ title : "My First Post", "author.name": "Jane",

  comments : [{ by: "Abe", text: "First" },

              { by : "Ada", text : "Good post" } ]

})

> db.blogposts.find( { "comments.by" : "Ada" } )

> db.blogposts.ensureIndex( { "comments.by" : 1 } );

举例

MongoDB是一个面向文档的数据库,目前由10gen开发并维护,它的功能丰富,齐全,完全可以替代MySQL。在使用MongoDB做产品原型的过程中,我们总结了MonogDB的一些亮点:

使用JSON风格语法,易于掌握和理解:MongoDB使用JSON的变种BSON作为内部存储的格式和语法。针对MongoDB的操作都使用JSON风格语法,客户端提交或接收的数据都使用JSON形式来展现。相对于SQL来说,更加直观,容易理解和掌握。

Schema-less,支持嵌入子文档:MongoDB是一个Schema-free的文档数据库。一个数据库可以有多个Collection,每 个CollectionDocuments的集合。CollectionDocument和传统数据库的TableRow并不对等。无需事先定义 Collection,随时可以创建。

Collection中可以包含具有不同schema的文档记录。 这意味着,你上一条记录中的文档有3个属性,而下一条记录的文档可以有10个属 性,属性的类型既可以是基本的数据类型(如数字、字符串、日期等),也可以是数组或者散列,甚至还可以是一个子文档(embed document)。这 样,可以实现逆规范化(denormalizing)的数据模型,提高查询的速度。

 

内置GridFS,支持大容量的存储。

  GridFS是一个出色的分布式文件系统,可以支持海量的数据存储。

  内置了GridFSMongoDB,能够满足对大数据集的快速范围查询。

内置Sharding

提供基于RangeAuto Sharding机制:一个collection可按照记录的范围,分成若干个段,切分到不同的Shard上。

Shards可以和复制结合,配合Replica sets能够实现Sharding+fail-over,不同的Shard之间可以负载均衡。查询是对 客户端是透明的。客户端执行查询,统计,MapReduce等操作,这些会被MongoDB自动路由到后端的数据节点。这让我们关注于自己的业务,适当的 时候可以无痛的升级。MongoDBSharding设计能力最大可支持约20 petabytes,足以支撑一般应用。

这可以保证MongoDB运行在便宜的PC服务器集群上。PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

第三方支持丰富。(这是与其他的NoSQL相比,MongoDB也具有的优势)

现在网络上的很多NoSQL开源数据库完全属于社区型的,没有官方支持,给使用者带来了很大的风险。

而开源文档数据库MongoDB背后有商业公司10gen为其提供供商业培训和支持。

而且MongoDB社区非常活跃,很多开发框架都迅速提供了对MongDB的支持。不少知名大公司和网站也在生产环境中使用MongoDB,越来越多的创新型企业转而使用MongoDB作为和DjangoRoR来搭配的技术方案。

性能优越:

在使用场合下,千万级别的文档对象,近10G的数据,对有索引的ID的查询不会比mysql慢,而对非索引字段的查询,则是全面胜出。 mysql实际无法胜任大数据量下任意字段的查询,而mongodb的查询性能实在让我惊讶。写入性能同样很令人满意,同样写入百万级别的数 据,mongodb比我以前试用过的couchdb要快得多,基本10分钟以下可以解决。补上一句,观察过程中mongodb都远算不上是CPU杀手。

2与关系型数据库相比,MongoDB的缺点:

①mongodb不支持事务操作。

  所以事务要求严格的系统(如果银行系统)肯定不能用它。(这点和优点是对应的)

②mongodb占用空间过大。

  关于其原因,在官方的FAQ中,提到有如下几个方面:

1、空间的预分配:为避免形成过多的硬盘碎片,mongodb每次空间不足时都会申请生成一大块的硬盘空间,而且申请的量从64M128M256M那 样的指数递增,直到2G为单个文件的最大体积。随着数据量的增加,你可以在其数据目录里看到这些整块生成容量不断递增的文件。

2、字段名所占用的空间:为了保持每个记录内的结构信息用于查询,mongodb需要把每个字段的key-value都以BSON的形式存储,如果 value域相对于key域并不大,比如存放数值型的数据,则数据的overhead是最大的。一种减少空间占用的方法是把字段名尽量取短一些,这样占用 空间就小了,但这就要求在易读性与空间占用上作为权衡了。我曾建议作者把字段名作个index,每个字段名用一个字节表示,这样就不用担心字段名取多长 了。但作者的担忧也不无道理,这种索引方式需要每次查询得到结果后把索引值跟原值作一个替换,再发送到客户端,这个替换也是挺耗费时间的。现在的实现算是 拿空间来换取时间吧。

3、删除记录不释放空间:这很容易理解,为避免记录删除后的数据的大规模挪动,原记录空间不删除,只标记已删除即可,以后还可以重复利用。

4、可以定期运行db.repairDatabase()来整理记录,但这个过程会比较缓慢

③MongoDB没有如MySQL那样成熟的维护工具,这对于开发和IT运营都是个值得注意的地方。

Mongodb数据库的介绍

标签:

原文地址:http://www.cnblogs.com/shaosks/p/5644129.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!