标签:
sparkSQL
1、主要的数据结构
DataFreames
2、开始使用:SQLContext
创建步骤:
Val sc:sparkContext
Val sqlContext=new org.apache.spark.sql.SQLContext(sc)
Import sqlContext.implicits._ //隐形将RDD转化DF
3、构建DF及DF 操作
Val sc:SparkContext
Val Val sqlContext=new org.apache.spark.sql.SQLContext(sc)
Val df = sqlContext.jsonFile(“/people.json”)
0) df.show
1) df.printSchema()
2) df.select(“name”).show
3) df.select(df(“name”),df(“age”)).show
4) df.filter(df(“age”)>21).show
5)df.groupBy(“age”).count().show
4、RDDs
Spark支持两种不同的方法将现有的RDDs转化为SchemaRDD
1) 使用反射(reflection)来推断包含类型对象的RDD的格式,这种基于反射方法使得代码更简洁且运行良好,因为当你写spark应用时,你早已经知道他的格式了
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
case class Person(name: String, age: Int)
val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")
val teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
2)通过一个编程接口,允许你构建一种格式,然后将类型时其应用到现在的RDD,虽然这种方法比较繁琐,但可以让你不知道RDD的列和他们的类型时构建SchemaRDDs
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// Create an RDD
val people = sc.textFile("examples/src/main/resources/people.txt")
// The schema is encoded in a string
val schemaString = "name age"
// Import Row.
import org.apache.spark.sql.Row;
// Import Spark SQL data types
import org.apache.spark.sql.types.{StructType,StructField,StringType};
// Generate the schema based on the string of schema
val schema = StructType(schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))
// Convert records of the RDD (people) to Rows.
val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))
// Apply the schema to the RDD.
val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)
// Register the DataFrames as a table.
peopleDataFrame.registerTempTable("people")
// SQL statements can be run by using the sql methods provided by sqlContext.
val results = sqlContext.sql("SELECT name FROM people")
// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
results.map(t => "Name: " + t(0)).collect().foreach(println)
5. 数据源
1)、加载和保存(load和save)
Val df=sqlCotext.load(“people.parquet”)
df.select(“name”,”age”).save(“namesAndAges.parquet”)
2) 格式选择
1. 文件类型
Val df=sqlCotext.load(“people.parquet”)
df.select(“name”,”age”).save(“namesAndAges.parquet”,”parquet”)
2. 保存方式
SaveMode.ErrorIfExists (default)
SaveMode.Append
SaveMode.Overwrite
SaveMode.Ignore
Val df=sqlCotext.load(“people.parquet”)
df.select(“name”,”age”).save(“namesAndAges.parquet”,”parquet”,SaveMode.append)
标签:
原文地址:http://www.cnblogs.com/yyy-blog/p/5656795.html