本文介绍malloc的实现及其malloc在进行堆扩展操作,并分析了虚拟地址到物理地址是如何实现映射关系。
ordeder原创,原文链接: http://blog.csdn.net/ordeder/article/details/41654509
1背景知识
1.1 进程的用户空间
图1:来源 http://www.open-open.com/lib/view/open1409716051963.html
该结构是由进程task_struct.mm_struct进行管理的mm_struct的定义如下:
- struct mm_struct {
- struct vm_area_struct * mmap;
- ...
- pgd_t * pgd;
- atomic_t mm_users;
- atomic_t mm_count;
- int map_count;
- ...
-
- unsigned long start_code, end_code, start_data, end_data;
- unsigned long start_brk, brk, start_stack;
- unsigned long arg_start, arg_end, env_start, env_end;
- unsigned long rss, total_vm, locked_vm;
- ...
- };
结构中的startxxx与endxxx描述了进程用户空间数据段的所在地址。对于堆空间而言,start_brk是堆空间的起始地址,堆是向上扩展的。对于进程堆空间的扩展,brk来记录堆的顶部位置。而进程动态申请的空间的已经使用到的地址空间(正在使用的变量)是被映射的,这些地址空间记录于链表struct vm_area_struct * mmap中。
1.2 地址映射
虚拟地址和物理地址的映射 : http://blog.csdn.net/ordeder/article/details/41630945
2 malloc 和free
malloc用于用户空间堆扩展的函数接口。该函数是C库,属于封装了相关系统调用(brk())的glibc库函数。而不是系统调用(系统可没有sys_malloc()。如果谈及malloc函数涉及的系统内核的那些操作,那么总体可以分为用户空间层面和内核空间层面来讨论。
2.1 用户层
malloc 的源码可见 http://repo.or.cz/w/glibc.Git/blob/HEAD:/malloc/malloc.c
Malloc和free是在用户层工作的,该接口为用户提供一个比较方便管理堆的接口。它的主要工作是维护一个空闲的堆空间缓冲区链表。该缓冲区可以用如下数据结构表述:
- struct malloc_chunk {
- INTERNAL_SIZE_T prev_size;
- INTERNAL_SIZE_T size;
- struct malloc_chunk* fd;
- struct malloc_chunk* bk;
-
- struct malloc_chunk* fd_nextsize;
- struct malloc_chunk* bk_nextsize;
- };
简化版的空闲缓冲区链表如下所示,图中head即为上述的malloc_chunk结构。而紧接着的size大小的内存区间是该chunk对应的数据区。
【malloc】
每当进程调用malloc,首先会在该堆缓冲区寻找足够大小的内存块分配给进程(选择缓冲区中的那个块就有首次命中和最佳命中两种算法)。如果freechunklist已无法满足需求的chunk时,那么malloc会通过调用系统调用brk()将进程空间的堆进行扩展,在新扩展的堆空间上建立一个新的chunk并加入到freelist中,这个过程相当于进程批量想系统申请一块内存(大小可能比实际需求大得多)。
malloc返回的地址是chunk的中用于存储数据的首地址,即: chunk + sizeof(chunk)
一个简单的首次命中malloc的伪代码:
- chunk free_list
- malloc(size)
- foreach(chuck in freelist)
- if(chunk.size >size)
- return chunk + sizeof(chunk)
-
- add = sys_brk(brk+(size +sizeof(chunk)))
- newchunk = (chunk)add;
- newchunk.size = size;
- ...
- return newchunk + sizeof(newchunk)
【free】
free操作是对堆空间的回收,回收的区块并不是立即返还给内核。而是将区块对应的chunk“标记”为空闲,加入空闲队列中。当然,如果空闲队列中出现相邻地址的chunk,那么可以考虑合并,已解决内存的碎片化,一遍满足之后的大内存申请的需求。
一个简单的free伪代码:将释放的地址空间加入空闲链表中
- free(add)
- pchunk = add - sizeof(chunk)
- insert_to_freelist(pchunk)
2.2 内核层
上文中,malloc的空闲chunk列表无法满足用户的需求,那么要通过sys_brk()进行堆的扩展,这时候才真正算得上进入内核空间。
sys_brk()涉及的主要操作有:
1. 在mm_struct中的堆上界brk延伸到newbrk:即申请一块vma,vma.start=brk vma.end=newbrk
2. 为该虚拟区间块进行物理内存的映射:从虚拟空间vma.start~vma.end中的每个内存页进行映射:
- addr = vma.start
- do{
- handle_mm_fault(mm,vma,addr,...)
- addr += PAGESIZE
- }while(addr< vma.end)
函数handle_mm_fault为addr所在的内存页映射物理页面。实现虚拟空间到物理空间的换算和映射。
1.通过alloc_page申请一个物理页面;
2.换算addr在进程pdg映射中所在的pte地址;
3.将addr对应的pte设置为物理页面的首地址。
2.3 虚拟地址与物理地址
当进程读取堆空间的地址vaddr时,虚拟地址vaddr到物理页面的映射如下图所示。
1. 用户空间的虚拟地址vaddr通过MMU(pgd,pmd,pte)找到对应的页表项pte记录的物理地址paddr
2. 页表项paddr的高20位是物理页号:index = x >> PAGE_SHIFT,同理,index后面补上12个0就是物理页表的首地址。
3. 通过物理页号,我们可以再内核中找到该物理页的描述的指针mem_map[index]。Page结构可以参考http://blog.csdn.net/ordeder/article/details/41630945。
3 总结
1 Malloc 和 free 怎么看着就是个用户空间的内存池。特别free的实现。
2 堆的扩展依据brk的移动。Vm_area记录了虚拟空间中已使用的地址块。
3 每个进程的虚拟地址到物理地址的映射是有进程mm.pgd决定的,在该结构中记录了虚拟页号到物理页号的映射关系。
参考
内核源码情景分析
http://blog.csdn.net/kobbee9/article/details/7397010
http://www.open-open.com/lib/view/open1409716051963.html
附录
- #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
- int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
- unsigned long address, int write_access)
- {
- int ret = -1;
- pgd_t *pgd;
- pmd_t *pmd;
-
- pgd = pgd_offset(mm, address);
- pmd = pmd_alloc(pgd, address);
-
- if (pmd) {
- pte_t * pte = pte_alloc(pmd, address);
- if (pte)
- ret = handle_pte_fault(mm, vma, address, write_access, pte);
- }
- return ret;
- }
-
- extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
- {
- return (pmd_t *) pgd;
- }
-
- extern inline pte_t *pte_alloc(pmd_t *pmd, unsigned long address)
- {
- address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
- if (pmd_none(*pmd)) {
- pte_t *page = get_pte_fast();
-
- if (!page)
- return get_pte_slow(pmd, address);
- pmd_set(pmd,page);
- return page + address;
- }
- if (pmd_bad(*pmd)) {
- __bad_pte(pmd);
- return NULL;
- }
- return (pte_t *)__pmd_page(*pmd) + address;
- }
-
- static inline int handle_pte_fault(struct mm_struct *mm,
- struct vm_area_struct * vma, unsigned long address,
- int write_access, pte_t * pte)
- {
- pte_t entry;
- entry = *pte;
- if (!pte_present(entry)) {
- ...
- if (pte_none(entry))
- return do_no_page(mm, vma, address, write_access, pte);
- ...
- }
- ...
- return 1;
- }
-
-
- static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma,
- unsigned long address, int write_access, pte_t *page_table)
- {
- struct page * new_page;
- pte_t entry;
-
- if (!vma->vm_ops || !vma->vm_ops->nopage)
- return do_anonymous_page(mm, vma, page_table, write_access, address);
-
-
- ...
- }
-
- static int do_anonymous_page(struct mm_struct * mm, struct vm_area_struct * vma, pte_t *page_table, int write_access, unsigned long addr)
- {
- struct page *page = NULL;
- pte_t entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
- if (write_access) {
- page = alloc_page(GFP_HIGHUSER);
- if (!page)
- return -1;
- clear_user_highpage(page, addr);
- entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
- mm->rss++;
- flush_page_to_ram(page);
- }
- set_pte(page_table, entry);
-
- update_mmu_cache(vma, addr, entry);
- return 1;
- }
-
- #define __MEMORY_START CONFIG_MEMORY_START //物理内存中用于动态分配使用的起始地址
- void flush_page_to_ram(struct page *pg)
- {
- unsigned long phys;
-
-
- phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START;
- __flush_page_to_ram(phys_to_virt(phys));
- }
-
- #define __virt_to_phys(vpage) ((vpage) - PAGE_OFFSET + PHYS_OFFSET)
- #define __phys_to_virt(ppage) ((ppage) + PAGE_OFFSET - PHYS_OFFSET)