标签:
最近一直在做订单类的项目,使用了事务。我们的数据库选用的是MySQL,存储引擎选用innoDB,innoDB对事务有着良好的支持。这篇文章我们一起来扒一扒事务相关的知识。
事务广泛的运用于订单系统、银行系统等多种场景。如果有以下一个场景:A用户和B用户是银行的储户。现在A要给B转账500元。那么需要做以下几件事:
1. 检查A的账户余额>500元; 2. A账户扣除500元; 3. B账户增加500元;
正常的流程走下来,A账户扣了500,B账户加了500,皆大欢喜。那如果A账户扣了钱之后,系统出故障了呢?A白白损失了500,而B也没有收到本该属于他的500。以上的案例中,隐藏着一个前提条件:A扣钱和B加钱,要么同时成功,要么同时失败。事务的需求就在于此。
与其给事务定义,不如说一说事务的特性。众所周知,事务需要满足ACID四个特性。
前文中提到,事务的隔离性受到隔离级别的影响。那么事务的隔离级别是什么呢?
事务的隔离级别可以认为是事务的"自私"程度,它定义了事务之间的可见性。隔离级别分为以下几种:
为了帮助理解四种隔离级别,这里举个例子。如图1,事务A和事务B先后开启,并对数据1进行多次更新。四个小人在不同的时刻开启事务,可能看到数据1的哪些值呢?
第一个小人,可能读到1-20之间的任何一个。因为未提交读的隔离级别下,其他事务对数据的修改也是对当前事务可见的。第二个小人可能读到1,10和20,他只能读到其他事务已经提交了的数据。第三个小人读到的数据去决于自身事务开启的时间点。在事务开启时,读到的是多少,那么在事务提交之前读到的值就是多少。第四个小人,只有在A end 到B start之间开启,才有可能读到数据,而在事务A和事务B执行的期间是读不到数据的。因为第四小人读数据是需要加锁的,事务A和B执行期间,会占用数据的写锁,导致第四个小人等待锁。
疑问:当第三个小人从A执行过程中开始执行,直到事务B提交后提交,那看到的是1还是10,一直都是1?按照提交读貌似他只可以读到1,但是按照可重复读又可以读到10的样子。。。到底是怎么回事呢?
其实需要明确,RR级别一定是可以读到事务开启时已经提交的事务,未提交的当然也看不到,不然一样存在不可重复读,只是这个保障通过MVCC去实现。(如有疏漏,望君指正)
图2 罗列了不同隔离级别所面对的问题。
很显然,隔离级别越高,它所带来的资源消耗也就越大(锁),因此它的并发性能越低。准确的说,在可串行化的隔离级别下,是没有并发的。
事务的实现是基于数据库的存储引擎。不同的存储引擎对事务的支持程度不一样。MySQL中支持事务的存储引擎有innoDB和NDB。innoDB是MySQL默认的存储引擎,默认的隔离级别是RR,并且在RR的隔离级别下更进一步,通过多版本并发控制(MVCC,Multiversion Concurrency Control )解决不可重复读问题,加上间隙锁(也就是并发控制)解决幻读问题。因此innoDB的RR隔离级别其实实现了串行化级别的效果,而且保留了比较好的并发性能。 事务的隔离性是通过锁实现,而事务的原子性、一致性和持久性则是通过事务日志实现。说到事务日志,不得不说的就是redo和undo。
redo log
在innoDB的存储引擎中,事务日志通过重做(redo)日志和innoDB存储引擎的日志缓冲(InnoDB Log Buffer)实现。事务开启时,事务中的操作,都会先写入存储引擎的日志缓冲中,在事务提交之前,这些缓冲的日志都需要提前刷新到磁盘上持久化,这就是DBA们口中常说的“日志先行”(Write-Ahead Logging)。
当事务提交之后,在Buffer Pool中映射的数据文件才会慢慢刷新到磁盘。此时如果数据库崩溃或者宕机,那么当系统重启进行恢复时,就可以根据redo log中记录的日志,把数据库恢复到崩溃前的一个状态。未完成的事务,可以继续提交,也可以选择回滚,这基于恢复的策略而定。
在系统启动的时候,就已经为redo log分配了一块连续的存储空间,以顺序追加的方式记录Redo Log,通过顺序IO来改善性能。所有的事务共享redo log的存储空间,它们的Redo Log按语句的执行顺序,依次交替的记录在一起。如下一个简单示例:
记录1:<trx1, insert...>
记录2:<trx2, delete...>
记录3:<trx3, update...>
记录4:<trx1, update...>
记录5:<trx3, insert...>
undo log
undo log主要为事务的回滚服务。在事务执行的过程中,除了记录redo log,还会记录一定量的undo log。undo log记录了数据在每个操作前的状态,如果事务执行过程中需要回滚,就可以根据undo log进行回滚操作。单个事务的回滚,只会回滚当前事务做的操作,并不会影响到其他的事务做的操作。
以下是undo+redo事务的简化过程:
假设有2个数值,分别为A和B,值为1,2
1. start transaction;
2. 记录 A=1 到undo log;
3. update A = 3;
4. 记录 A=3 到redo log;
5. 记录 B=2 到undo log;
6. update B = 4;
7. 记录B = 4 到redo log;
8. 将redo log刷新到磁盘
9. commit
在1-8的任意一步系统宕机,事务未提交,该事务就不会对磁盘上的数据做任何影响。如果在8-9之间宕机,恢复之后可以选择回滚,也可以选择继续完成事务提交,因为此时redo log已经持久化。若在9之后系统宕机,内存映射中变更的数据还来不及刷回磁盘,那么系统恢复之后,可以根据redo log把数据刷回磁盘。
所以,redo log其实保障的是事务的持久性和一致性,而undo log则保障了事务的原子性。
分布式事务的实现方式有很多,既可以采用innoDB提供的原生的事务支持,也可以采用消息队列来实现分布式事务的最终一致性。这里我们主要聊一下innoDB对分布式事务的支持。
如图,MySQL的分布式事务模型。模型中分三块:应用程序(AP)、资源管理器(RM)、事务管理器(TM)。
分布式事务采用两段式提交(two-phase commit)的方式。
如果有一个节点失败,就需要全局的节点全部rollback,以此保障事务的原子性。
什么时候需要使用事务呢?我想,只要业务中需要满足ACID的场景,都需要事务的支持。尤其在订单系统、银行系统中,事务是不可或缺的。
这篇文章主要介绍了事务的特性,以及MySQL innoDB对事务的支持。事务相关的知识远不止文中所说,本文仅作抛砖引玉,不足之处还望读者多多见谅。
标签:
原文地址:http://www.cnblogs.com/zhiqian-ali/p/5668199.html