标签:
java内存泄漏大家都不陌生了,简单粗俗的讲,就是该被释放的对象没有释放,一直被某个或某些实例所持有却不再被使用导致 GC 不能回收。在Java中,内存泄漏就是存在一些被分配的对象,这些对象有下面两个特点,首先,这些对象是可达的,即在有向图中,存在通路可以与其相连;其次,这些对象是无用的,即程序以后不会再使用这些对象。如果对象满足这两个条件,这些对象就可以判定为Java中的内存泄漏,这些对象不会被GC所回收,然而它却占用内存。
在C++中,内存泄漏的范围更大一些。有些对象被分配了内存空间,然后却不可达,由于C++中没有GC,这些内存将永远收不回来。在Java中,这些不可达的对象都由GC负责回收,因此程序员不需要考虑这部分的内存泄露。
通过分析,我们得知,对于C++,程序员需要自己管理边和顶点,而对于Java程序员只需要管理边就可以了(不需要管理顶点的释放)。通过这种方式,Java提高了编程的效率。
Java 内存泄漏的典型例子
Vector v = new Vector(10); for (int i = 1; i < 100; i++) { Object o = new Object(); v.add(o); o = null; }在这个例子中,我们循环申请Object对象,并将所申请的对象放入一个 Vector 中,如果我们仅仅释放引用本身,那么 Vector 仍然引用该对象,所以这个对象对 GC 来说是不可回收的。因此,如果对象加入到Vector 后,还必须从 Vector 中删除,最简单的方法就是将 Vector 对象设置为 null。
Android 内存泄漏的主要问题可以分为以下几种类型
一、静态变量引起的内存泄漏
在java中静态变量的生命周期是在类加载时开始,类卸载时结束。换句话说,在android中其生命周期是在进程启动时开始,进程死亡时结束。所以在程序的运行期间,如果进程没有被杀死,静态变量就会一直存在,不会被回收掉。如果静态变量强引用了某个Activity中变量,那么这个Activity就同样也不会被释放,即便是该Activity执行了onDestroy(不要将执行onDestroy和被回收划等号)。这类问题的解决方案为:1.寻找与该静态变量生命周期差不多的替代对象。2.若找不到,将强引用方式改成弱引用。例子:
1、单例引起的Context内存泄漏
由于单例的静态特性使得其生命周期跟应用的生命周期一样长,所以如果使用不恰当的话,很容易造成内存泄漏。
public class IMManager { private Context context; private static IMManager mInstance; public static IMManager getInstance(Context context) { if (mInstance == null) { synchronized (IMManager.class) { if (mInstance == null) mInstance = new IMManager(context); } } return mInstance; } private IMManager(Context context) { this.context = context; } }
这是一个普通的单例模式,当创建这个单例的时候,由于需要传入一个Context,所以这个Context的生命周期的长短至关重要:
1、如果此时传入的是 Application 的 Context,因为 Application 的生命周期就是整个应用的生命周期,所以这将没有任何问题。
2、如果此时传入的是 Activity 的 Context,当这个 Context 所对应的 Activity 退出时,由于该 Context 的引用被单例对象所持有,其生命周期等于整个应用程序的生命周期,所以当前 Activity 退出时它的内存并不会被回收,这就造成泄漏了。
正确的方式应该改为下面这种方式:
public class IMManager { private Context context; private static IMManager mInstance; public static IMManager getInstance(Context context) { if (mInstance == null) { synchronized (IMManager.class) { if (mInstance == null) //将传入的context转换成Application的context mInstance = new IMManager(context.getApplicationContext()); } } return mInstance; } private IMManager(Context context) { this.context = context; } }二、非静态内部类引起的内存泄漏
在java中,创建一个非静态的内部类实例,就会引用它的外围实例。
第一种情况:
如果这个非静态内部类实例做了一些耗时的操作,就会造成外围对象不会被回收,从而导致内存泄漏。这类问题的解决方案为:1.将内部类变成静态内部类
2.如果有强引用Activity中的属性,则将该属性的引用方式改为弱引用。3.在业务允许的情况下,当Activity执行onDestory时,结束这些耗时任务。例子:
public class LeakAty extends Activity { @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.aty_leak); test(); } public void test() { //匿名内部类会引用其外围实例LeakAty.this,所以会导致内存泄漏 new Thread(new Runnable() { @Override public void run() { while (true) { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }).start(); } }解决方法:
public class LeakAty extends Activity { @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.aty_leak); test(); //加上static,变成静态匿名内部类 } public static void test() { new Thread(new Runnable() { @Override public void run() { while (true) { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }).start(); } }
第二种情况:非静态内部类创建静态实例造成的内存泄漏
public class MainActivity extends Activity { private static TestResource mResource = null; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); if(mResource == null){ mResource = new TestResource(); } } class TestResource { } }这样就在Activity内部创建了一个非静态内部类的单例,每次启动Activity时都会使用该单例的数据,这样虽然避免了资源的重复创建,不过这种写法却会造成内存泄漏,因为非静态内部类默认会持有外部类的引用,而该非静态内部类又创建了一个静态的实例,该实例的生命周期和应用的一样长,这就导致了该静态实例一直会持有该Activity的引用,导致Activity的内存资源不能正常回收。
正确做法:
将该内部类设为静态内部类或将该内部类抽取出来封装成一个单例,如果需要使用Context,请按照上面推荐的使用Application
的 Context。关于Context的问题,参考:http://blog.csdn.net/rebirth_love/article/details/51853986
三、Handler引起的内存泄漏
Handler
的使用造成的内存泄漏问题应该说是最为常见了,很多时候我们为了避免 ANR 而不在主线程进行耗时操作,在处理网络任务或者封装一些请求回调等api都借助Handler来处理,但 Handler 不是万能的,对于 Handler 的使用代码编写一不规范即有可能造成内存泄漏。另外,我们知道 Handler、Message 和 MessageQueue 都是相互关联在一起的,万一 Handler 发送的 Message 尚未被处理,则该 Message 及发送它的 Handler 对象将被线程 MessageQueue
一直持有。由于 Handler 属于 TLS(Thread Local Storage) 变量, 生命周期和 Activity 是不一致的。因此这种实现方式一般很难保证跟 View
或者 Activity 的生命周期保持一致,故很容易导致无法正确释放。例子:
public class SampleActivity extends Activity { private final Handler mLeakyHandler = new Handler() { @Override public void handleMessage(Message msg) { // ... } }; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); // Post a message and delay its execution for 10 minutes. mLeakyHandler.postDelayed(new Runnable() { @Override public void run() { /* ... */ } }, 1000 * 60 * 10); // Go back to the previous Activity. finish(); } }分析:上边例子有三个地方容易造成内存泄漏。第一个:mLeakyHandler为匿名内部类实例,会引用外围对象LeakAty.this,如果该Handler在Activity退出时依然还有消息需要处理,那么这个Activity就不会被回收。第二个:new Runnable(){}非静态匿名内部类。第三:Handler中对context的引用。
当该 Activity 被 finish() 掉时,延迟执行任务的 Message 还会继续存在于主线程中,它持有该 Activity 的 Handler 引用,所以此时 finish() 掉的 Activity 就不会被回收了从而造成内存泄漏(因 Handler 为非静态内部类,它会持有外部类的引用,在这里就是指 SampleActivity)。
修复方法:在 Activity 中避免使用非静态内部类,比如上面我们将 Handler 声明为静态的,则其存活期跟 Activity 的生命周期就无关了。同时通过弱引用的方式引入 Activity,避免直接将 Activity 作为 context 传进去,见下面代码:
public class SampleActivity extends Activity { /** * Instances of static inner classes do not hold an implicit * reference to their outer class. * 静态的內部类,则其存活期跟 Activity 的生命周期就无关了 */ private static class MyHandler extends Handler { //弱引用解決context引用引起的內存洩漏 private final WeakReference<SampleActivity> mActivity; public MyHandler(SampleActivity activity) { mActivity = new WeakReference<SampleActivity>(activity); } @Override public void handleMessage(Message msg) { SampleActivity activity = mActivity.get(); if (activity != null) { // ... } } } private final MyHandler mHandler = new MyHandler(this); /** * Instances of anonymous classes do not hold an implicit * reference to their outer class when they are "static". * 静态的內部类,则其存活期跟 Activity 的生命周期就无关了 */ private static final Runnable sRunnable = new Runnable() { @Override public void run() { /* ... */ } }; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); // Post a message and delay its execution for 10 minutes. mHandler.postDelayed(sRunnable, 1000 * 60 * 10); // Go back to the previous Activity. finish(); } }
下面几个方法都可以移除
Message:
public final void removeCallbacks(Runnable r); public final void removeCallbacks(Runnable r, Object token); public final void removeCallbacksAndMessages(Object token); public final void removeMessages(int what); public final void removeMessages(int what, Object object);四、资源未关闭造成的内存泄漏
对于使用了BraodcastReceiver,ContentObserver,File,游标 Cursor,Stream,Bitmap等资源的使用,应该在Activity销毁时及时关闭或者注销,否则这些资源将不会被回收,造成内存泄漏。
参考文章:
https://yq.aliyun.com/articles/3009?&utm_campaign=sys&utm_medium=market&utm_source=edm_email&msctype=email&mscmsgid=111916020300373837&#
http://mp.weixin.qq.com/s?__biz=MzA3MDMyMjkzNg==&mid=404182514&idx=1&sn=6ca5df78a3f5f48b4a9f91a035690631&scene=0#wechat_redirect
补充一下java reference的知识点:
Java对引用的分类有
Strong reference, SoftReference, WeakReference, PhatomReference 四种。
在Android应用的开发中,为了防止内存溢出,在处理一些占用内存大而且声明周期较长的对象时候,可以尽量应用软引用和弱引用技术。
软/弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收器回收,Java虚拟机就会把这个软引用加入到与之关联的引用队列中。利用这个队列可以得知被回收的软/弱引用的对象列表,从而为缓冲器清除已失效的软/弱引用。
假设我们的应用会用到大量的默认图片,比如应用中有默认的头像,默认游戏图标等等,这些图片很多地方会用到。如果每次都去读取图片,由于读取文件需要硬件操作,速度较慢,会导致性能较低。所以我们考虑将图片缓存起来,需要的时候直接从内存中读取。但是,由于图片占用内存空间比较大,缓存很多图片需要很多的内存,就可能比较容易发生OutOfMemory异常。这时,我们可以考虑使用软/弱引用技术来避免这个问题发生。以下就是高速缓冲器的雏形:
使用软引用以后,在OutOfMemory异常发生之前,这些缓存的图片资源的内存空间可以被释放掉的,从而避免内存达到上限,避免Crash发生。
如果只是想避免OutOfMemory异常的发生,则可以使用软引用。如果对于应用的性能更在意,想尽快回收一些占用内存比较大的对象,则可以使用弱引用。
另外可以根据对象是否经常使用来判断选择软引用还是弱引用。如果该对象可能会经常使用的,就尽量用软引用。如果该对象不被使用的可能性更大些,就可以用弱引用。
标签:
原文地址:http://blog.csdn.net/rebirth_love/article/details/51914987