标签:
Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。
MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。
以下是MapReduce的基本语法:
>db.collection.mapReduce
(
function() {emit(key,value);}, //map 函数
function(key,values) {return reduceFunction}, //reduce 函数
{
out: collection,
query: document,
sort: document,
limit: number
}
)
使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将key 与 value 传递给 Reduce 函数进行处理。
Map 函数必须调用 emit(key, value) 返回键值对。
参数说明:
插入测试数据:
for i in xrange(1000):
rID=math.floor(random.random()*10);
price = round(random.random()*10,2);
if rID < 4:
db.test.insert({"_id":i,"user":"Joe","product":rID,"price":price});
elif rID>=4 and rID<7:
db.test.insert({"_id":i,"user":"Josh","product":rID,"price":price});
else:
db.test.insert({"_id":i,"user":"Ken","product":rID,"price":price});
结果数据为:
{ "_id" : 0, "price" : 5.9, "product" : 9, "user" : "Ken" }
{ "_id" : 1, "price" : 7.59, "product" : 7, "user" : "Ken" }
{ "_id" : 2, "price" : 4.72, "product" : 0, "user" : "Joe" }
{ "_id" : 3, "price" : 1.35, "product" : 1, "user" : "Joe" }
{ "_id" : 4, "price" : 2.31, "product" : 0, "user" : "Joe" }
{ "_id" : 5, "price" : 5.29, "product" : 5, "user" : "Josh" }
{ "_id" : 6, "price" : 3.34, "product" : 1, "user" : "Joe" }
{ "_id" : 7, "price" : 7.2, "product" : 4, "user" : "Josh" }
{ "_id" : 8, "price" : 8.1, "product" : 6, "user" : "Josh" }
{ "_id" : 9, "price" : 2.57, "product" : 3, "user" : "Joe" }
{ "_id" : 10, "price" : 0.54, "product" : 2, "user" : "Joe" }
{ "_id" : 11, "price" : 0.66, "product" : 1, "user" : "Joe" }
{ "_id" : 12, "price" : 5.51, "product" : 1, "user" : "Joe" }
{ "_id" : 13, "price" : 3.74, "product" : 6, "user" : "Josh" }
{ "_id" : 14, "price" : 4.82, "product" : 0, "user" : "Joe" }
{ "_id" : 15, "price" : 9.79, "product" : 3, "user" : "Joe" }
{ "_id" : 16, "price" : 9.6, "product" : 5, "user" : "Josh" }
{ "_id" : 17, "price" : 4.06, "product" : 7, "user" : "Ken" }
{ "_id" : 18, "price" : 1.37, "product" : 5, "user" : "Josh" }
{ "_id" : 19, "price" : 6.77, "product" : 9, "user" : "Ken" }
测试1、每个用户各购买了多少个产品?
用SQL语句实现为:select user,count(product) from test group by user
//MapReduce实现
map=function (){
emit(this.user,{count:1})
}
reduce = function (key, values){
var total = 0;
for (var i = 0; i < values.length; i++)
{
total += values[i].count;
}
return {count:total};
}
result = db.test.mapReduce(map,reduce,{out: ‘re‘})
执行结果:
查询 out结果:
2、每个用户不同的产品购买了多少个?(复合Key做re)
SQL实现:select user,product,count(*) from test group by user,product
MapReduce 实现:
map = function (){
emit({user:this.user,product:this.product},{count:1})
}
reduce = function (key, values){
var total = 0;
for (var i = 0; i < values.length; i++)
{
total += values[i].count;
}
return {count:total};
}
执行:result = db.test.mapReduce(map,reduce,{out: ‘re2‘})
查询结果re2:
3. 每个用户购买的产品数量,总金额是多少?(复合Reduce结果处理)
SQL实现为:select user,count(product),sum(price) from test group by user
MapReduce实现:
map=function (){
emit(this.user,{amount:this.price,count:1})
}
reduce = function (key, values){
var res={amount:0,count:0};
for (var i = 0; i < values.length; i++)
{
res.count += values[i].count;
res.amount += values[i].amount;
}
res.count = Math.round(res.count,2);
res.amount = Math.round(res.amount,2);
return res;
}
执行:db.test.mapReduce(map,reduce,{out:"re3"})
查询re3:
4、在3中返回的amount的float精度需要改成两位小数,还需要得到商品的平均价格。(使用Finalize处理reduce结果集)
SQL实现:select user,count(sku),sum(price),round(sum(price)/count(sku),2) as avgPrice from test group by user
MapReduce实现:
标签:
原文地址:http://www.cnblogs.com/shaosks/p/5684906.html