标签:
Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading import time def show(arg): time.sleep(1) print ‘thread‘+str(arg) for i in range(10): t = threading.Thread(target=show, args=(i,)) t.start() print ‘main thread stop‘
上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
更多方法:
import threading import time class MyThread(threading.Thread): def __init__(self,num): threading.Thread.__init__(self) self.num = num def run(self):#定义每个线程要运行的函数 print("running on number:%s" %self.num) time.sleep(3) if __name__ == ‘__main__‘: t1 = MyThread(1) t2 = MyThread(2) t1.start() t2.start()
线程锁(Lock、RLock)
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。
#!/usr/bin/env python #-*-coding:utf-8-*- import threading import time NUM=10 def func(i,l): global NUM #上锁 l.acquire() NUM -= 1 time.sleep(5) print(NUM) #开锁 l.release() #lock=threading.Lock() # lock=threading.RLock() lock=threading.BoundedSemaphore(5) for i in range(10): # t=threading.Thread(target=func,args=(lock,)) t=threading.Thread(target=func,args=(i,lock,)) t.start()
#!/usr/bin/env python #-*-coding:utf-8-*- import threading def func(i,e): print(i) e.wait()#检测是什么灯, print(i+100) event=threading.Event() for i in range(10): t=threading.Thread(target=func,args=(i,event,)) t.start() #-------------- event.clear()#设置成红灯 inp=input(‘>>>‘) if inp == "1": event.set()#设置成绿灯
#!/usr/bin/env python #-*-coding:utf-8-*- #第一种 import threading def condition(): ret = False r = input(‘>>>‘) if r == ‘true‘: ret = True else: ret = False return ret def func(i,con): print(i) con.acquire() con.wait_for(condition) print(i+100) con.release() c = threading.Condition() for i in range(10): t = threading.Thread(target=func, args=(i,c,)) t.start() #第二种 import threading def func(i,con): print(i) con.acquire() con.wait() print(i+100) con.release() c = threading.Condition() for i in range(10): t = threading.Thread(target=func, args=(i,c,)) t.start() while True: inp = input(‘>>>‘) if inp == ‘q‘: break c.acquire() c.notify(int(inp)) c.release() from threading import Timer def hello(): print("hello, world") t = Timer(1, hello) t.start() # after 1 seconds, "hello, world" will be printed
#互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。 import threading,time def run(n): semaphore.acquire() time.sleep(1) print("run the thread: %s" %n) semaphore.release() if __name__ == ‘__main__‘: num= 0 semaphore = threading.BoundedSemaphore(5) #最多允许5个线程同时运行 for i in range(20): t = threading.Thread(target=run,args=(i,)) t.start()
from multiprocessing import Process
import threading
import time
def foo(i):
print ‘say hi‘,i
for i in range(10):
p = Process(target=foo,args=(i,))
p.start()
注意:由于进程之间的数据需要各自持有一份,所以创建进程需要的非常大的开销。
进程间的数据共享
#!/usr/bin/env python
#-*-coding:utf-8-*-
#第一种multiprocessing,queues
# from multiprocessing import Process
# from multiprocessing import queues
# import multiprocessing
#
# def foo(i,arg):
# arg.put(i)
# print(‘say hi‘,i,arg.qsize())
#
# if __name__==‘__main__‘:
# li = queues.Queue(20,ctx=multiprocessing)
# for i in range(10):
# p = Process(target=foo,args=(i,li,))
# p.start()
#第二种Array
# from multiprocessing import Process
# from multiprocessing import queues
# import multiprocessing
# from multiprocessing import Array
# def foo(i,arg):
# arg[i]=i+100
# for item in arg:
# print(item)
# print(‘==========‘)
# if __name__==‘__main__‘:
# li=Array(‘i‘,10)
# for i in range(10):
# p=Process(target=foo,args=(i,li,))
# p.start()
#第三种
from multiprocessing import Process
from multiprocessing import queues
import multiprocessing
from multiprocessing import Manager
def foo(i,arg):
# arg.put(i)
# print(‘say hi‘,i,arg.qsize())
# arg[i] = i + 100
# for item in arg:
# print(item)
# print(‘==========‘)
arg[i] = i + 100
print(arg.values())
if __name__ == ‘__main__‘:
#li = []
#li = queues.Queue(20,ctx=multiprocessing)
obj = Manager()
li = obj.dict()
#li = Array(‘i‘,10)
for i in range(10):
p = Process(target=foo,args=(i,li,))
#p.daemon = True
p.start()
#p.join()
import time
time.sleep(0.1)
‘c‘: ctypes.c_char, ‘u‘: ctypes.c_wchar, ‘b‘: ctypes.c_byte, ‘B‘: ctypes.c_ubyte, ‘h‘: ctypes.c_short, ‘H‘: ctypes.c_ushort, ‘i‘: ctypes.c_int, ‘I‘: ctypes.c_uint, ‘l‘: ctypes.c_long, ‘L‘: ctypes.c_ulong, ‘f‘: ctypes.c_float, ‘d‘: ctypes.c_double
进程锁实例:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from multiprocessing import Process, Array, RLock
def Foo(lock,temp,i):
"""
将第0个数加100
"""
lock.acquire()
temp[0] = 100+i
for item in temp:
print i,‘----->‘,item
lock.release()
lock = RLock()
temp = Array(‘i‘, [11, 22, 33, 44])
for i in range(20):
p = Process(target=Foo,args=(lock,temp,i,))
p.start()
进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from multiprocessing import Process,Pool
import time
def Foo(i):
time.sleep(2)
return i+100
def Bar(arg):
print arg
pool = Pool(5)
#print pool.apply(Foo,(1,))
#print pool.apply_async(func =Foo, args=(1,)).get()
for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar)
print ‘end‘
pool.close()
pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from greenlet import greenlet
def test1():
print 12
gr2.switch()
print 34
gr2.switch()
def test2():
print 56
gr1.switch()
print 78
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
import gevent
def foo():
print(‘Running in foo‘)
gevent.sleep(0)
print(‘Explicit context switch to foo again‘)
def bar():
print(‘Explicit context to bar‘)
gevent.sleep(0)
print(‘Implicit context switch back to bar‘)
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
#!/usr/bin/env python #-*-coding:utf-8-*- import queue,time #先进先出队列 #put放数据,是否阻塞,阻塞时的超时时间 #get取数据(默认阻塞),是否阻塞,阻塞时的超时时间 #队列最大长度 #qsize()真是个数 #maxsize最大支持个数 #join,task_done,阻塞进程,当队列中的任务执行完毕后,不再阻塞 # q=queue.Queue(2) # print(q.empty())#判断队列有没有元素,有返回True # q.put(11) # q.put(22) # print(q.empty()) # print(q.qsize()) # q.put(22) # q.put(33,block=False) # q.put(33,block=False,timeout=2) # print(q.get()) # print(q.get()) # print(q.get(timeout=2)) import queue #先进先出 # q = queue.LifoQueue() # q.put(123) # q.put(456) # print(q.get()) # q = queue.PriorityQueue() #根据优先级处理 # q.put((1,"alex1")) # q.put((2,"alex2")) # q.put((3,"alex3")) # print(q.get()) # q= queue.deque() #双向队列 # q.append((123)) # q.append(234) # q.appendleft(456) # print(q.pop()) # print(q.popleft()) # q=queue.Queue(5) # q.put(123) # q.put(456) # q.get() # q.task_done() # q.get() # time.sleep(5) # q.task_done() # q.join()
标签:
原文地址:http://www.cnblogs.com/zhangkui/p/5693749.html