码迷,mamicode.com
首页 > 数据库 > 详细

python学习笔记-Day12 (上下文管理、redis发布订阅、rabbitmq、pymysql模块、SQLAchemy)

时间:2016-07-30 11:49:21      阅读:290      评论:0      收藏:0      [点我收藏+]

标签:

上下文管理

import contextlib

# 上下文管理

@contextlib.contextmanager
def worker_state(state_list, worker_thread):
    """
    :param state_list:
    :param worker_thread:
    :return:
    """
    state_list.append(worker_thread) # 2. 进入执行函数体
    try:
        yield                       # 3. 遇到yield,弹出函数执行with代码块
    finally:
        state_list.remove(worker_thread)  # 5. 执行,然后结束

free_list = []
current_thread = alex
with worker_state(free_list, current_thread): # 1. 首先进入with, 进入worker_state函数
    print(123)                          # 4. 执行此代码后,回到函数
# 上下文管理,实现自动关闭socket

import contextlib
import socket

@contextlib.contextmanager
def context_socket(host,port):
    sk = socket.socket()   # 2. 执行函数体内容
    sk.bind((host,port))
    sk.listen(5)
    try:
        yield sk          # 3. yield 返回with代码块执行
    finally:
        sk.close()         # 5. 继续执行,结束

with context_socket(127.0.0.1, 8888) as sock:   # 1. 执行context_socket函数
    print(sock)            # 4. 执行with代码块后,返回函数

redis的发布与订阅

# 发布

import redis

class RedisHelper:

    def __init__(self):
        self.__conn = redis.Redis(host=192.168.11.87)

    def public(self,msg,chan):
        self.__conn.publish(chan,msg)   # 调用发布函数,向订阅者发布
        return True

    def subscribe(self,chan):
        pub = self.__conn.pubsub()
        pub.subscribe(chan)
        pub.parse_response()
        return pub


if __name__ == __main__:
    obj = RedisHelper()
    obj.public(this is test, fm8888.7)
# 订阅
import publish # 导入为上代码的类

obj = publish.RedisHelper()
data = obj.subscribe(fm8888.7)
print(data.parse_response())

 rabbitmq基本使用

############ 基础使用

# 生产者
import pika

# 创建一个连接
connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.31.98))

# 创建一个频道
channel = connection.channel()

# 定义一个队列
channel.queue_declare(queue=rock)

channel.basic_publish(exchange=‘‘,
                      routing_key=rock,   # 往这个队列发消息
                      body=hello world!)
print(" [x] Sent ‘hello world‘")
connection.close()

print( [*] Waiting for messages. To exit press CTRL+c )
channel.start_consuming()

=================================================================================================================

############ 消费者
import pika

# 创建连接
connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.31.98))

# 创建频道
channel = connection.channel()

# 定义一个队列
channel.queue_declare(queue=rock)

def callback(ch, method, properties,body):  # ch: channel   method:  队列名字   properties:  连接上rabbiatmq基本属性   body: 取出队列的内容
    print([x] Received %r % body)

channel.basic_consume(callback,queue=rock,no_ack=True)  # 当我在队列rock中取到数据时, 我就会执行callback函数,并且我还会给callback函数传入4个参数

print( [*] Waiting for messages. To exit press CTRL+c )
channel.start_consuming()

rabbitmq: 消息不丢失

######## 生产者
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.11.87))

channel = connection.channel()

channel.exchange_declare(exchange=rock_now,
                         type=direct)

severity = info
message = 123
channel.basic_publish(exchange=rock_now,
                      routing_key=severity,
                      body=message,
                      propperties=pika.BasicProperties(
                          delivery_mode=2,  # 生产者设置持久化,保证生产者发送队列时,宕机不会丢失
                      ) )
print(" [x] Sent %r:%r" % (severity,message))
connection.close()

========================================

######## 消费者
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.11.87))

channel = connection.channel()

channel.exchange_declare(exchange=rock_now,
                         type=direct) # 指定关键字,接收有此关键字的队列
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
severities = [error, info, warning]
for severity in severities:
    channel.queue_bind(exchange=rock_now,
                       queue=queue_name,
                       routing_key=severity)
print( [*] Waiting for messages. To exit press CTRL+c )

def callback(ch, method, properties,body):
    print([x] Received %r % body)

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=False)   # 消费者在接受队里消息后,发送ack确认接收


channel.start_consuming()

rabbitmq: 获取顺序

# 消费者
# 因为是获取,只针对消费者

import pika

# 当有多个消费者,共同取数据时,默认python是“按照顺序取”
# 也就是,如果有三个消费者,去共同取队列数据,
# 第一个消费者,取得是1,4,7,10..., 第二个消费者,取得是2,5,8,11..., 第三个消费者,取的是3,6,9,12...
# 虽然,消费者之间并不会因为顺序而阻塞, 但是各个消费者还是会按照他们的先后顺序取跳着取数据
# 下边,我们修改这种默认的配置

connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.31.98))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue=hello)


def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(10)
    print(ok)
    ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_qos(prefetch_count=1)   # 此设置为多个消费者,不跳着取值

channel.basic_consume(callback,
                      queue=hello,
                      no_ack=False)

print( [*] Waiting for messages. To exit press CTRL+C)
channel.start_consuming()

rabbitmq: fanout类型exchange

######### 生产者
import pika

# 创建连接
connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.31.98))

# 创建频道
channel = connection.channel()

# 创建exchang, fanout 类型的exchange发送或接受所有在此exchange中的队列
channel.exchange_declare(exchange=rock, type=fanout)

message = rock now
channel.basic_publish(exchange=rock,  # 往这个exchange组里所有队列发送
                      routing_key=‘‘,
                      body=message)
print(" [x] Sent %r" % message)
connection.close()

========================================

######## 消费者
import pika

# 创建连接
connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.11.87))

# 创建频道
channel = connection.channel()

# 创建exchang, fanout 类型的exchange发送或接受所有在此exchange中的队列
channel.exchange_declare(exchange=rock, type=fanout)

# 随机创建队列
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

# 绑定
# 这里当我们运行多次此程序时,我们随机创建的队列肯定不一致,而我们绑定的是一个exchange,
# 所以,这里我们运行多次此程序,然后运行一次生产者,即可
channel.queue_bind(exchange=rock, queue=queue_name)

print( [*] Waiting for messages. To exit press CTRL+c )

def callback(ch,method,properties,body):
    print( [x] %r % body )

channel.basic_consume(callback, queue=queue_name, no_ack=True)

channel.start_consuming()

 rabbitmq: direct类型exchange

######## 消费者
import pika

# 创建连接
connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.11.87))

# 创建频道
channel = connection.channel()

# 创建exchange, direct类型的exchange可使程序根据关键字的信息发送或接收相应队列的内容
channel.exchange_declare(exchange=rock_now,
                         type=direct) # 指定关键字,接收有此关键字的队列

# 创建随机队列
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

severities = [error, info, warning]
for severity in severities:
    channel.queue_bind(exchange=rock_now,
                       queue=queue_name,
                       routing_key=severity)  # 指定关键字,找对应关键字队列接收
print( [*] Waiting for messages. To exit press CTRL+c )

def callback(ch, method, properties,body):
    print([x] Received %r % body)

channel.basic_consume(callback,queue=queue_name,no_ack=True)


channel.start_consuming()

========================================

######## 生产者
import pika

# 创建连接
connection = pika.BlockingConnection(pika.ConnectionParameters(host=192.168.11.87))

# 创建频道
channel = connection.channel()

# 绑定exchang
channel.exchange_declare(exchange=rock_now,
                         type=direct)

severity = info
message = 123
channel.basic_publish(exchange=rock_now,
                      routing_key=severity, # 指定关键字,发送到关键字对应的队列
                      body=message)
print(" [x] Sent %r:%r" % (severity,message))
connection.close()

 rabbitmq: topic类型exchange

exchange type = topic

在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

  • # 表示可以匹配 0 个 或 多个 单词
  • *  表示只能匹配 一个 单词
发送者路由值              队列中
old.boy.python          old.*  -- 不匹配
old.boy.python          old.#  -- 匹配

在使用上,参考关键字匹配,只不过是传入值带*或#,topic会模糊匹配,而关键字不会~

pymysql 模块

#基础操作


import pymysql

# 创建连接
conn = pymysql.connect(host=192.168.31.98, port=3306, user=root, passwd=123qwe, db=test)

# 创建游标
cursor = conn.cursor()

# 执行SQL,并返回收影响行数
effect_row = cursor.execute("update hosts set host = ‘1.1.1.2‘")

# 执行SQL,并返回受影响行数
effect_row = cursor.execute("update hosts set host = ‘1.1.1.2‘ where nid > %s", (1,))  # 支持字符串拼接

# 执行SQL,并返回受影响行数
effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])   # 支持多个字符串拼接


# 提交,不然无法保存新建或者修改的数据
conn.commit()

# 关闭游标
cursor.close()
# 关闭连接
conn.close()
# 自增ID

import pymysql
 
conn = pymysql.connect(host=127.0.0.1, port=3306, user=root, passwd=123, db=t1)
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close()
 
# 获取最新自增ID
new_id = cursor.lastrowid
# 在上代码中,我们使用executemany,添加多条后,获取最新的自增ID为最后一个
# 获取查询数据 

import
pymysql conn = pymysql.connect(host=127.0.0.1, port=3306, user=root, passwd=123, db=t1) cursor = conn.cursor() cursor.execute("select * from hosts") # 获取第一行数据 row_1 = cursor.fetchone() # 获取前n行数据,设置为3,则获取3行数据 # row_2 = cursor.fetchmany(3) # 获取所有数据 # row_3 = cursor.fetchall() conn.commit() cursor.close() conn.close()
# 移动游标
-----------------------------------------------------------------
cursor.scroll(1,mode=relative)  # 相对当前位置移动
cursor.scroll(2,mode=absolute) # 相对绝对位置移动
-----------------------------------------------------------------

import pymysql
 
conn = pymysql.connect(host=127.0.0.1, port=3306, user=root, passwd=123, db=t1)
cursor = conn.cursor()
cursor.execute("select * from hosts")
 

# 获取所有数据
row_3 = cursor.fetchall()

# 获取所有数据后,我将游标上移2位
cursor.scroll(-2,mode=relative)

# 重新获取所有数据,就从游标处开始获取所有
row_3 = cursor.fetchall()
 
conn.commit()
cursor.close()
conn.close()
# fetch 数据类型

import pymysql
 
conn = pymysql.connect(host=127.0.0.1, port=3306, user=root, passwd=123, db=t1)
 
# 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
 
result = cursor.fetchone()
 
conn.commit()
cursor.close()
conn.close()

SQLAchemy (ORM)使用:创建与删除

######### 创建表

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine


# 创建连接
engine = create_engine("mysql+pymysql://root:123qwe@192.168.11.100:3306/test", max_overflow=5)

Base = declarative_base()  # 规定这么写

# 创建单表
class Users(Base):   # 所有你自定义的类必须继承你刚刚创建的base类
    __tablename__ = users   # 表名定义

    # 表中创建三个列
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))

    __table_args__ = (
    UniqueConstraint(id, name, name=uix_id_name),  # 联合索引
        Index(ix_id_name, name, extra),
    )

Base.metadata.create_all(engine)  # 这里,Base会找到所有它的子类,根据子类执行创建表
######### 一对多创建表

# 一对多
class Favor(Base):
    __tablename__ = favor  # 表名定义
    nid = Column(Integer, primary_key=True)  # 自增ID
    caption = Column(String(50), default=red, unique=True) # 字符串最多50,unique=True不允许重复,default默认值red


class Person(Base):
    __tablename__ = person
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))   # ForeignKey("favor.nid"),与创建favor表的nid列做一个外键

Base.metadata.create_all(engine)
######## 多对多建表

# 多对多
class ServerToGroup(Base):  # 第三张表存下两个表的关系
    __tablename__ = servertogroup
    nid = Column(Integer, primary_key=True, autoincrement=True)
    # 这里同时外键两个表的ID列,这样建立了下两个表(类)的关系
    server_id = Column(Integer, ForeignKey(server.id))
    group_id = Column(Integer, ForeignKey(group.id))

class Group(Base):
    __tablename__ = group
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)


class Server(Base):
    __tablename__ = server

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)

Base.metadata.create_all(engine)
# 创建与删除

Base.metadata.create_all(engine)   # 创建所有表
Base.metadata.drop_all(engine)     # 删除所有表

SQLAchemy (ORM)使用:操作表

#
engine = create_engine("mysql+pymysql://root:123qwe@192.168.11.100:3306/test", max_overflow=5)

Base = declarative_base()  # 规定这么写

class Users(Base):   # 所有你自定义的类必须继承你刚刚创建的base类
    __tablename__ = users   # 表名定义

    # 表中创建三个列
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))

    __table_args__ = (
    UniqueConstraint(id, name, name=uix_id_name),  # 联合索引
        Index(ix_id_name, name, extra),
    )


obj = Users(name="alex0", extra=sb)  # 需要在哪个表增加数据,就将哪个表的类封装一个对象
seeion.add(obj)  # 添加

seeion.commit() # 提交

 

python学习笔记-Day12 (上下文管理、redis发布订阅、rabbitmq、pymysql模块、SQLAchemy)

标签:

原文地址:http://www.cnblogs.com/coolking/p/5719996.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!