标签:
RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。
MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。
RabbitMQ安装
安装配置epel源 $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm 安装erlang $ yum -y install erlang 安装RabbitMQ $ yum -y install rabbitmq-server
注意:service rabbitmq-server start/stop
安装API
pip install pika or easy_install pika or 源码 https://pypi.python.org/pypi/pika
使用API操作RabbitMQ
基于Queue实现生产者消费者模型
#!/usr/bin/env python # -*- coding:utf-8 -*- import Queue import threading message = Queue.Queue(10) def producer(i): while True: message.put(i) def consumer(i): while True: msg = message.get() for i in range(12): t = threading.Thread(target=producer, args=(i,)) t.start() for i in range(10): t = threading.Thread(target=consumer, args=(i,)) t.start()
对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。
#!/usr/bin/env python import pika # ######################### 生产者 ######################### connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.queue_declare(queue=‘hello‘) channel.basic_publish(exchange=‘‘, routing_key=‘hello‘, body=‘Hello World!‘) print(" [x] Sent ‘Hello World!‘") connection.close()
#!/usr/bin/env python import pika # ########################## 消费者 ########################## connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.queue_declare(queue=‘hello‘) def callback(ch, method, properties, body): print(" [x] Received %r" % body) channel.basic_consume(callback, queue=‘hello‘, no_ack=True) print(‘ [*] Waiting for messages. To exit press CTRL+C‘) channel.start_consuming()
1、acknowledgment 消息不丢失
no-ack = False,如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。
import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘10.211.55.4‘)) channel = connection.channel() channel.queue_declare(queue=‘hello‘) def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print ‘ok‘ ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback, queue=‘hello‘, no_ack=False) print(‘ [*] Waiting for messages. To exit press CTRL+C‘) channel.start_consuming()
2、durable 消息不丢失
#!/usr/bin/env python import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host=‘10.211.55.4‘)) channel = connection.channel() # make message persistent channel.queue_declare(queue=‘hello‘, durable=True) channel.basic_publish(exchange=‘‘, routing_key=‘hello‘, body=‘Hello World!‘, properties=pika.BasicProperties( delivery_mode=2, # make message persistent )) print(" [x] Sent ‘Hello World!‘") connection.close()
#!/usr/bin/env python # -*- coding:utf-8 -*- import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host=‘10.211.55.4‘)) channel = connection.channel() # make message persistent channel.queue_declare(queue=‘hello‘, durable=True) def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print ‘ok‘ ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback, queue=‘hello‘, no_ack=False) print(‘ [*] Waiting for messages. To exit press CTRL+C‘) channel.start_consuming()
3、消息获取顺序
默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。
channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列
#!/usr/bin/env python # -*- coding:utf-8 -*- import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host=‘10.211.55.4‘)) channel = connection.channel() # make message persistent channel.queue_declare(queue=‘hello‘) def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print ‘ok‘ ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(callback, queue=‘hello‘, no_ack=False) print(‘ [*] Waiting for messages. To exit press CTRL+C‘) channel.start_consuming()
4、发布订阅
发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。
exchange type = fanout
复制代码 #!/usr/bin/env python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.exchange_declare(exchange=‘direct_logs‘, type=‘direct‘) result = channel.queue_declare(exclusive=True) queue_name = result.method.queue severities = sys.argv[1:] if not severities: sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0]) sys.exit(1) for severity in severities: channel.queue_bind(exchange=‘direct_logs‘, queue=queue_name, routing_key=severity) print(‘ [*] Waiting for logs. To exit press CTRL+C‘) def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
#!/usr/bin/env python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.exchange_declare(exchange=‘direct_logs‘, type=‘direct‘) severity = sys.argv[1] if len(sys.argv) > 1 else ‘info‘ message = ‘ ‘.join(sys.argv[2:]) or ‘Hello World!‘ channel.basic_publish(exchange=‘direct_logs‘, routing_key=severity, body=message) print(" [x] Sent %r:%r" % (severity, message)) connection.close()
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
步骤一:
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) engine.execute( "INSERT INTO ts_test (a, b) VALUES (‘2‘, ‘v1‘)" ) engine.execute( "INSERT INTO ts_test (a, b) VALUES (%s, %s)", ((555, "v1"),(666, "v1"),) ) engine.execute( "INSERT INTO ts_test (a, b) VALUES (%(id)s, %(name)s)", id=999, name="v1" ) result = engine.execute(‘select * from ts_test‘) result.fetchall()
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) # 事务操作 with engine.begin() as conn: conn.execute("insert into table (x, y, z) values (1, 2, 3)") conn.execute("my_special_procedure(5)") conn = engine.connect() # 事务操作 with conn.begin(): conn.execute("some statement", {‘x‘:5, ‘y‘:10})
注:查看数据库连接:show status like ‘Threads%‘;
步骤二:
使用 Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 进行数据库操作。Engine使用Schema Type创建一个特定的结构对象,之后通过SQL Expression Language将该对象转换成SQL语句,然后通过 ConnectionPooling 连接数据库,再然后通过 Dialect 执行SQL,并获取结果。
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() user = Table(‘user‘, metadata, Column(‘id‘, Integer, primary_key=True), Column(‘name‘, String(20)), ) color = Table(‘color‘, metadata, Column(‘id‘, Integer, primary_key=True), Column(‘name‘, String(20)), ) engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) metadata.create_all(engine) # metadata.clear() # metadata.remove()
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() user = Table(‘user‘, metadata, Column(‘id‘, Integer, primary_key=True), Column(‘name‘, String(20)), ) color = Table(‘color‘, metadata, Column(‘id‘, Integer, primary_key=True), Column(‘name‘, String(20)), ) engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) conn = engine.connect() # 创建SQL语句,INSERT INTO "user" (id, name) VALUES (:id, :name) conn.execute(user.insert(),{‘id‘:7,‘name‘:‘seven‘}) conn.close() # sql = user.insert().values(id=123, name=‘wu‘) # conn.execute(sql) # conn.close() # sql = user.delete().where(user.c.id > 1) # sql = user.update().values(fullname=user.c.name) # sql = user.update().where(user.c.name == ‘jack‘).values(name=‘ed‘) # sql = select([user, ]) # sql = select([user.c.id, ]) # sql = select([user.c.name, color.c.name]).where(user.c.id==color.c.id) # sql = select([user.c.name]).order_by(user.c.name) # sql = select([user]).group_by(user.c.name) # result = conn.execute(sql) # print result.fetchall() # conn.close()
更多内容详见:
http://www.jianshu.com/p/e6bba189fcbd
http://docs.sqlalchemy.org/en/latest/core/expression_api.html
注:SQLAlchemy无法修改表结构,如果需要可以使用SQLAlchemy开发者开源的另外一个软件Alembic来完成。
步骤三:
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) Base = declarative_base() class User(Base): __tablename__ = ‘users‘ id = Column(Integer, primary_key=True) name = Column(String(50)) # 寻找Base的所有子类,按照子类的结构在数据库中生成对应的数据表信息 # Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() # ########## 增 ########## # u = User(id=2, name=‘sb‘) # session.add(u) # session.add_all([ # User(id=3, name=‘sb‘), # User(id=4, name=‘sb‘) # ]) # session.commit() # ########## 删除 ########## # session.query(User).filter(User.id > 2).delete() # session.commit() # ########## 修改 ########## # session.query(User).filter(User.id > 2).update({‘cluster_id‘ : 0}) # session.commit() # ########## 查 ########## # ret = session.query(User).filter_by(name=‘sb‘).first() # ret = session.query(User).filter_by(name=‘sb‘).all() # print ret # ret = session.query(User).filter(User.name.in_([‘sb‘,‘bb‘])).all() # print ret # ret = session.query(User.name.label(‘name_label‘)).all() # print ret,type(ret) # ret = session.query(User).order_by(User.id).all() # print ret # ret = session.query(User).order_by(User.id)[1:3] # print ret # session.commit()
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
1、创建表
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = ‘users‘ id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint(‘id‘, ‘name‘, name=‘uix_id_name‘), Index(‘ix_id_name‘, ‘name‘, ‘extra‘), ) # 一对多 class Favor(Base): __tablename__ = ‘favor‘ nid = Column(Integer, primary_key=True) caption = Column(String(50), default=‘red‘, unique=True) class Person(Base): __tablename__ = ‘person‘ nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 多对多 class Group(Base): __tablename__ = ‘group‘ id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) class Server(Base): __tablename__ = ‘server‘ id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base): __tablename__ = ‘servertogroup‘ nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey(‘server.id‘)) group_id = Column(Integer, ForeignKey(‘group.id‘)) def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine)
ForeignKeyConstraint([‘other_id‘], [‘othertable.other_id‘]),
2、操作表
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = ‘users‘ id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint(‘id‘, ‘name‘, name=‘uix_id_name‘), Index(‘ix_id_name‘, ‘name‘, ‘extra‘), ) def __repr__(self): return "%s-%s" %(self.id, self.name) # 一对多 class Favor(Base): __tablename__ = ‘favor‘ nid = Column(Integer, primary_key=True) caption = Column(String(50), default=‘red‘, unique=True) def __repr__(self): return "%s-%s" %(self.nid, self.caption) class Person(Base): __tablename__ = ‘person‘ nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 与生成表结构无关,仅用于查询方便 favor = relationship("Favor", backref=‘pers‘) # 多对多 class ServerToGroup(Base): __tablename__ = ‘servertogroup‘ nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey(‘server.id‘)) group_id = Column(Integer, ForeignKey(‘group.id‘)) group = relationship("Group", backref=‘s2g‘) server = relationship("Server", backref=‘s2g‘) class Group(Base): __tablename__ = ‘group‘ id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) # group = relationship(‘Group‘,secondary=ServerToGroup,backref=‘host_list‘) class Server(Base): __tablename__ = ‘server‘ id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine) session = Session()
增删改查
#增 obj = Users(name="alex0", extra=‘sb‘) session.add(obj) session.add_all([ Users(name="alex1", extra=‘sb‘), Users(name="alex2", extra=‘sb‘), ]) session.commit() #删 session.query(Users).filter(Users.id > 2).delete() session.commit() #改 session.query(Users).filter(Users.id > 2).update({"name" : "099"}) session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False) session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate") session.commit() #查 ret = session.query(Users).all() ret = session.query(Users.name, Users.extra).all() ret = session.query(Users).filter_by(name=‘alex‘).all() ret = session.query(Users).filter_by(name=‘alex‘).first() #其他 # 条件 ret = session.query(Users).filter_by(name=‘alex‘).all() ret = session.query(Users).filter(Users.id > 1, Users.name == ‘eric‘).all() ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == ‘eric‘).all() ret = session.query(Users).filter(Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name=‘eric‘))).all() from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == ‘eric‘)).all() ret = session.query(Users).filter(or_(Users.id < 2, Users.name == ‘eric‘)).all() ret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == ‘eric‘, Users.id > 3), Users.extra != "" )).all() # 通配符 ret = session.query(Users).filter(Users.name.like(‘e%‘)).all() ret = session.query(Users).filter(~Users.name.like(‘e%‘)).all() # 限制 ret = session.query(Users)[1:2] # 排序 ret = session.query(Users).order_by(Users.name.desc()).all() ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组 from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合 q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()
标签:
原文地址:http://www.cnblogs.com/zhangkui/p/5720582.html