码迷,mamicode.com
首页 > 数据库 > 详细

python之路 RabbitMQ、SQLAlchemy

时间:2016-07-30 11:54:57      阅读:235      评论:0      收藏:0      [点我收藏+]

标签:

一、RabbitMQ

RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。

MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。

RabbitMQ安装

安装配置epel源
   $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
 
安装erlang
   $ yum -y install erlang
 
安装RabbitMQ
   $ yum -y install rabbitmq-server

 注意:service rabbitmq-server start/stop

安装API

pip install pika
or
easy_install pika
or
源码
 
https://pypi.python.org/pypi/pika

 使用API操作RabbitMQ

基于Queue实现生产者消费者模型

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import Queue
import threading


message = Queue.Queue(10)


def producer(i):
    while True:
        message.put(i)


def consumer(i):
    while True:
        msg = message.get()


for i in range(12):
    t = threading.Thread(target=producer, args=(i,))
    t.start()

for i in range(10):
    t = threading.Thread(target=consumer, args=(i,))
    t.start()

 对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。

#!/usr/bin/env python
import pika
 
# ######################### 生产者 #########################
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host=‘localhost‘))
channel = connection.channel()
 
channel.queue_declare(queue=‘hello‘)
 
channel.basic_publish(exchange=‘‘,
                      routing_key=‘hello‘,
                      body=‘Hello World!‘)
print(" [x] Sent ‘Hello World!‘")
connection.close()

 

#!/usr/bin/env python
import pika
 
# ########################## 消费者 ##########################
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host=‘localhost‘))
channel = connection.channel()
 
channel.queue_declare(queue=‘hello‘)
 
def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
 
channel.basic_consume(callback,
                      queue=‘hello‘,
                      no_ack=True)
 
print(‘ [*] Waiting for messages. To exit press CTRL+C‘)
channel.start_consuming()

 1、acknowledgment 消息不丢失

no-ack = False,如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。

技术分享
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host=10.211.55.4))
channel = connection.channel()

channel.queue_declare(queue=hello)

def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(10)
    print ok
    ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_consume(callback,
                      queue=hello,
                      no_ack=False)

print( [*] Waiting for messages. To exit press CTRL+C)
channel.start_consuming()
消费者

2、durable   消息不丢失

技术分享
#!/usr/bin/env python
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host=10.211.55.4))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue=hello, durable=True)

channel.basic_publish(exchange=‘‘,
                      routing_key=hello,
                      body=Hello World!,
                      properties=pika.BasicProperties(
                          delivery_mode=2, # make message persistent
                      ))
print(" [x] Sent ‘Hello World!‘")
connection.close()
生产者
技术分享
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host=10.211.55.4))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue=hello, durable=True)


def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(10)
    print ok
    ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_consume(callback,
                      queue=hello,
                      no_ack=False)

print( [*] Waiting for messages. To exit press CTRL+C)
channel.start_consuming()
消费者

3、消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

技术分享
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host=10.211.55.4))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue=hello)


def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(10)
    print ok
    ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_qos(prefetch_count=1)

channel.basic_consume(callback,
                      queue=hello,
                      no_ack=False)

print( [*] Waiting for messages. To exit press CTRL+C)
channel.start_consuming()
消费者

4、发布订阅

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

 exchange type = fanout

技术分享
复制代码

#!/usr/bin/env python
import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host=localhost))
channel = connection.channel()

channel.exchange_declare(exchange=direct_logs,
                         type=direct)

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

severities = sys.argv[1:]
if not severities:
    sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
    sys.exit(1)

for severity in severities:
    channel.queue_bind(exchange=direct_logs,
                       queue=queue_name,
                       routing_key=severity)

print( [*] Waiting for logs. To exit press CTRL+C)

def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()
消费者
技术分享
#!/usr/bin/env python
import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host=localhost))
channel = connection.channel()

channel.exchange_declare(exchange=direct_logs,
                         type=direct)

severity = sys.argv[1] if len(sys.argv) > 1 else info
message =  .join(sys.argv[2:]) or Hello World!
channel.basic_publish(exchange=direct_logs,
                      routing_key=severity,
                      body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()
生产者

二、SQLAlchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
 
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
 
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
 
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
 
更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html

 步骤一:

使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from sqlalchemy import create_engine
 
 
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)
 
engine.execute(
    "INSERT INTO ts_test (a, b) VALUES (‘2‘, ‘v1‘)"
)
 
engine.execute(
     "INSERT INTO ts_test (a, b) VALUES (%s, %s)",
    ((555, "v1"),(666, "v1"),)
)
engine.execute(
    "INSERT INTO ts_test (a, b) VALUES (%(id)s, %(name)s)",
    id=999, name="v1"
)
 
result = engine.execute(‘select * from ts_test‘)
result.fetchall()

 

技术分享
#!/usr/bin/env python
# -*- coding:utf-8 -*-

from sqlalchemy import create_engine


engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)


# 事务操作
with engine.begin() as conn:
    conn.execute("insert into table (x, y, z) values (1, 2, 3)")
    conn.execute("my_special_procedure(5)")
    
    
conn = engine.connect()
# 事务操作 
with conn.begin():
       conn.execute("some statement", {x:5, y:10})
事物操作

注:查看数据库连接:show status like ‘Threads%‘;

步骤二:

使用 Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 进行数据库操作。Engine使用Schema Type创建一个特定的结构对象,之后通过SQL Expression Language将该对象转换成SQL语句,然后通过 ConnectionPooling 连接数据库,再然后通过 Dialect 执行SQL,并获取结果。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey
 
metadata = MetaData()
 
user = Table(‘user‘, metadata,
    Column(‘id‘, Integer, primary_key=True),
    Column(‘name‘, String(20)),
)
 
color = Table(‘color‘, metadata,
    Column(‘id‘, Integer, primary_key=True),
    Column(‘name‘, String(20)),
)
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)
 
metadata.create_all(engine)
# metadata.clear()
# metadata.remove()

 

技术分享
#!/usr/bin/env python
# -*- coding:utf-8 -*-

from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey

metadata = MetaData()

user = Table(user, metadata,
    Column(id, Integer, primary_key=True),
    Column(name, String(20)),
)

color = Table(color, metadata,
    Column(id, Integer, primary_key=True),
    Column(name, String(20)),
)
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)

conn = engine.connect()

# 创建SQL语句,INSERT INTO "user" (id, name) VALUES (:id, :name)
conn.execute(user.insert(),{id:7,name:seven})
conn.close()

# sql = user.insert().values(id=123, name=‘wu‘)
# conn.execute(sql)
# conn.close()

# sql = user.delete().where(user.c.id > 1)

# sql = user.update().values(fullname=user.c.name)
# sql = user.update().where(user.c.name == ‘jack‘).values(name=‘ed‘)

# sql = select([user, ])
# sql = select([user.c.id, ])
# sql = select([user.c.name, color.c.name]).where(user.c.id==color.c.id)
# sql = select([user.c.name]).order_by(user.c.name)
# sql = select([user]).group_by(user.c.name)

# result = conn.execute(sql)
# print result.fetchall()
# conn.close()
增删改查

更多内容详见:

    http://www.jianshu.com/p/e6bba189fcbd

    http://docs.sqlalchemy.org/en/latest/core/expression_api.html

注:SQLAlchemy无法修改表结构,如果需要可以使用SQLAlchemy开发者开源的另外一个软件Alembic来完成。

步骤三:

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
 
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)
 
Base = declarative_base()
 
 
class User(Base):
    __tablename__ = ‘users‘
    id = Column(Integer, primary_key=True)
    name = Column(String(50))
 
# 寻找Base的所有子类,按照子类的结构在数据库中生成对应的数据表信息
# Base.metadata.create_all(engine)
 
Session = sessionmaker(bind=engine)
session = Session()
 
 
# ########## 增 ##########
# u = User(id=2, name=‘sb‘)
# session.add(u)
# session.add_all([
#     User(id=3, name=‘sb‘),
#     User(id=4, name=‘sb‘)
# ])
# session.commit()
 
# ########## 删除 ##########
# session.query(User).filter(User.id > 2).delete()
# session.commit()
 
# ########## 修改 ##########
# session.query(User).filter(User.id > 2).update({‘cluster_id‘ : 0})
# session.commit()
# ########## 查 ##########
# ret = session.query(User).filter_by(name=‘sb‘).first()
 
# ret = session.query(User).filter_by(name=‘sb‘).all()
# print ret
 
# ret = session.query(User).filter(User.name.in_([‘sb‘,‘bb‘])).all()
# print ret
 
# ret = session.query(User.name.label(‘name_label‘)).all()
# print ret,type(ret)
 
# ret = session.query(User).order_by(User.id).all()
# print ret
 
# ret = session.query(User).order_by(User.id)[1:3]
# print ret
# session.commit()

 2、ORM使用

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。

1、创建表

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

Base = declarative_base()

# 创建单表
class Users(Base):
    __tablename__ = ‘users‘
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))

    __table_args__ = (
    UniqueConstraint(‘id‘, ‘name‘, name=‘uix_id_name‘),
        Index(‘ix_id_name‘, ‘name‘, ‘extra‘),
    )


# 一对多
class Favor(Base):
    __tablename__ = ‘favor‘
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default=‘red‘, unique=True)


class Person(Base):
    __tablename__ = ‘person‘
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))


# 多对多
class Group(Base):
    __tablename__ = ‘group‘
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)


class Server(Base):
    __tablename__ = ‘server‘

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)


class ServerToGroup(Base):
    __tablename__ = ‘servertogroup‘
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey(‘server.id‘))
    group_id = Column(Integer, ForeignKey(‘group.id‘))


def init_db():
    Base.metadata.create_all(engine)


def drop_db():
    Base.metadata.drop_all(engine)

 ForeignKeyConstraint([‘other_id‘], [‘othertable.other_id‘]),

2、操作表

技术分享
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

Base = declarative_base()

# 创建单表
class Users(Base):
    __tablename__ = users
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))

    __table_args__ = (
    UniqueConstraint(id, name, name=uix_id_name),
        Index(ix_id_name, name, extra),
    )

    def __repr__(self):
        return "%s-%s" %(self.id, self.name)

# 一对多
class Favor(Base):
    __tablename__ = favor
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default=red, unique=True)

    def __repr__(self):
        return "%s-%s" %(self.nid, self.caption)

class Person(Base):
    __tablename__ = person
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
    # 与生成表结构无关,仅用于查询方便
    favor = relationship("Favor", backref=pers)

# 多对多
class ServerToGroup(Base):
    __tablename__ = servertogroup
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey(server.id))
    group_id = Column(Integer, ForeignKey(group.id))
    group = relationship("Group", backref=s2g)
    server = relationship("Server", backref=s2g)

class Group(Base):
    __tablename__ = group
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
    # group = relationship(‘Group‘,secondary=ServerToGroup,backref=‘host_list‘)


class Server(Base):
    __tablename__ = server

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)




def init_db():
    Base.metadata.create_all(engine)


def drop_db():
    Base.metadata.drop_all(engine)


Session = sessionmaker(bind=engine)
session = Session()
表结构+连接数据库

增删改查

#增
obj = Users(name="alex0", extra=‘sb‘)
session.add(obj)
session.add_all([
    Users(name="alex1", extra=‘sb‘),
    Users(name="alex2", extra=‘sb‘),
])
session.commit()


#删
session.query(Users).filter(Users.id > 2).delete()
session.commit()

#改
session.query(Users).filter(Users.id > 2).update({"name" : "099"})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()

#查
ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name=‘alex‘).all()
ret = session.query(Users).filter_by(name=‘alex‘).first()

#其他
# 条件
ret = session.query(Users).filter_by(name=‘alex‘).all()
ret = session.query(Users).filter(Users.id > 1, Users.name == ‘eric‘).all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == ‘eric‘).all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name=‘eric‘))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == ‘eric‘)).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == ‘eric‘)).all()
ret = session.query(Users).filter(
    or_(
        Users.id < 2,
        and_(Users.name == ‘eric‘, Users.id > 3),
        Users.extra != ""
    )).all()


# 通配符
ret = session.query(Users).filter(Users.name.like(‘e%‘)).all()
ret = session.query(Users).filter(~Users.name.like(‘e%‘)).all()

# 限制
ret = session.query(Users)[1:2]

# 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()

# 分组
from sqlalchemy.sql import func

ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).all()

ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()

# 连表

ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()

ret = session.query(Person).join(Favor).all()

ret = session.query(Person).join(Favor, isouter=True).all()


# 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()

 

python之路 RabbitMQ、SQLAlchemy

标签:

原文地址:http://www.cnblogs.com/zhangkui/p/5720582.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!