码迷,mamicode.com
首页 > 编程语言 > 详细

【排序】希尔排序算法

时间:2016-07-31 17:19:00      阅读:235      评论:0      收藏:0      [点我收藏+]

标签:

    特别说明:

        对于算法,重在理解其思想、解决问题的方法,思路。因此,以下内容全都假定待排序序列的存储结构为:顺序存储结构。

 

    希尔排序算法摘要:

    希尔排序又称为“缩小增量排序”。直接插入排序算法在效率上虽说没办法突破 技术分享,但其在少量数据或待排序列基本有序的情况下,效率却是非常高效的。因此,为进一步提高排序算法的效率,就需要适当地构造前述的那些条件。希尔排序就是第一批突破排序算法时间复杂度 技术分享 的一个算法。因此,希尔排序算法算是一种属于插入排序类别的方法。

 

    希尔排序算法思想:

    算法总体描述:将待排序序列按指定步长,划分成多个子序列,分别对每个子序列应用插入排序进行排序,待全部子序列全部排序完成后,将步长缩小后,再次重新划分子序列并重新排序。如此重复,直至步长降至1为止。

 

    具体描述:

    假设待排序序列为 技术分享。即为:技术分享技术分享技术分享、...、技术分享技术分享,步长增量 step 初始为 技术分享 ,以后每将缩短为 step = 技术分享,则算法可描述如下:

    01.step = 技术分享

    02.将整个待排序序列划分为以下 技术分享 个子序列:

        { 技术分享技术分享技术分享技术分享、...、技术分享 }、

        { 技术分享技术分享技术分享、...、技术分享 }、

        ...、

        { 技术分享技术分享技术分享、...、技术分享 };

        注意:以上各子序列的最后一个元素的下标均不超过 n。即:

                技术分享 技术分享 n;

                技术分享 技术分享 n;

                ....

                技术分享 技术分享 n;

    03.分别对以上划分好的各子序列进行插入排序;

    04.如果 step = 1,则排序完成退出;

    05.否则,缩小步长增量 step = 技术分享,重新回到 02 点执行;

 

    下面简要分析下,为何希尔排序能成功构造出前文摘要部分所述的条件。首先,将待排序序列按步长划分成多个子序列,则每个子序列的个数就比原子序列少 step 倍,因此,执行插入排序时的效率会比对 n 个数的序列来的高。其次,虽说随着步长 step 的不断缩小,每个子序列的数据量逐渐增大,但每执行完一趟后,待排序序列相比之下都前前一趟更为有序了一些,此时执行起插入排序,其效率又会有所提高。因此,希尔排序就是如此巧妙地构造出了前文摘要所述的两个条件:少数据量或者待排序序列基本有序。从而插入排序的效率,最终提高希尔排序的效率。

    希尔排序算法编码参考如下:

技术分享
 1 // 
 2 // summary     : 希尔排序算法.(希尔排序其实算是对直接插入排序算法的改进)
 3 // in param    : seqlist 待排序列表.同时也是排完序列表.
 4 // in param    : nLen 列表长度
 5 // out param   : --
 6 // return      : --
 7 // !!!note       : 01.以下实现均假设一切输入数据都合法.即:内部不对参数全法性进行校验,默认它们全都合法有效.
 8 //               02.排序开始前 seqlist 是无序的,排序结束后 seqlist 是有序的.
 9 //               03.该实现版本,步长每次折半.
10 void shell_sort(int seqlist[/*nLen*/], const int nLen) {
11     auto nTemp     = 0;
12     auto nStep     = nLen >> 1;
13     auto nLoopIdx  = 0; // 趟循环
14     auto nOuterIdx = 0;
15     auto nInnerIdx = 0;
16     while (nStep > 0) {
17         for (nLoopIdx = 0; nLoopIdx < nStep; ++nLoopIdx) {
18             for (nOuterIdx = nLoopIdx + nStep; nOuterIdx < nLen; nOuterIdx += nStep) {
19                 nTemp = seqlist[nOuterIdx];
20                 for (nInnerIdx = nOuterIdx; nInnerIdx > 0; nInnerIdx -= nStep) {
21                     if (seqlist[nInnerIdx] >= seqlist[nInnerIdx - nStep]) {
22                         break;
23                     }
24                     seqlist[nInnerIdx] = seqlist[nInnerIdx - nStep];
25                 }
26                 seqlist[nInnerIdx] = nTemp;
27             }
28         }
29         nStep = nStep >> 1;
30     }
31 }
希尔排序算法编码参考

    上面编码其实可以使用3个循环即可实现希尔排序算法,但从理解思想的角度看,上述编码更容易理解些(还是那句话,本人是重要理解算法的思想,解决问题的思路、方法,因此并没有在编码简洁等方面做太多的完善,有些时间,算法写的过于简洁,反而不容易理解)。

    

    算法分析:

    关于希尔排序算法的时间复杂度是与步长的取定有关系的,目前在数学上还没有明确的论证。

    在严蔚敏的书中述:经过大量实验,有的人认为增量序列公式为 技术分享 = 技术分享时,希尔排序时间复杂度为 技术分享,其中 t 为排序的趟数,1技术分享 k 技术分享 t 技术分享 技术分享

    Wiki中描述:当步长取 step = 技术分享 时,时间复杂度为 技术分享

    在其他数据结构书本中(如:《大话数据结构》),则描述时间复杂度为 技术分享

    在其他有关该算法描述的资料上,如:Web上等,有的也是直接描述为 技术分享

    在算导中倒没有见到对Shell sort的内容,所以有点可惜。因为算导是比较偏向理论性论述、论证的一本书籍,算是比较权威的。

    

    不论怎么样,目前认为shell sort算法在最好情况下的时间复杂度为 技术分享,最坏情况下为 技术分享。在少数据量的情况下,shell sort 算是非常不错的一个排序算。且相较插入排序算法,其主要操作是在数据的比较上,数据移动操作相对更少。但希尔排序算法是不稳定排序算法,而直接插入排序算法却是稳定的。二者需要的辅助空间都是 技术分享另外,一定要注意:不论步长公式取值,都必需保证最后步长值,必需为 1

【排序】希尔排序算法

标签:

原文地址:http://www.cnblogs.com/tongy0/p/5723147.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!