码迷,mamicode.com
首页 > 编程语言 > 详细

高吞吐量的分布式发布订阅消息系统Kafka--spring-integration-kafka的应用

时间:2016-08-03 10:11:43      阅读:362      评论:0      收藏:0      [点我收藏+]

标签:

一、概述

    Spring Integration Kafka 是基于 Apache Kafka 和Spring Integration来集成Kafka,对开发配置提供了方便。

二、配置

    1、spring-kafka-consumer.xml

 
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://www.springframework.org/schema/integration"
    xmlns:int-kafka="http://www.springframework.org/schema/integration/kafka"
    xmlns:task="http://www.springframework.org/schema/task"
    xsi:schemaLocation="http://www.springframework.org/schema/integration/kafka
                        http://www.springframework.org/schema/integration/kafka/spring-integration-kafka.xsd
                        http://www.springframework.org/schema/integration
                        http://www.springframework.org/schema/integration/spring-integration.xsd
                        http://www.springframework.org/schema/beans
                        http://www.springframework.org/schema/beans/spring-beans.xsd
                        http://www.springframework.org/schema/task
                        http://www.springframework.org/schema/task/spring-task.xsd">
 
    <!-- topic test conf -->
    <int:channel id="inputFromKafka" >
        <int:dispatcher task-executor="kafkaMessageExecutor" />
    </int:channel>
    <!-- zookeeper配置 可以配置多个 -->
    <int-kafka:zookeeper-connect id="zookeeperConnect"
        zk-connect="192.168.1.237:2181" zk-connection-timeout="6000"
        zk-session-timeout="6000" zk-sync-time="2000" />
    <!-- channel配置 auto-startup="true"  否则接收不发数据 -->
    <int-kafka:inbound-channel-adapter
        id="kafkaInboundChannelAdapter" kafka-consumer-context-ref="consumerContext"
        auto-startup="true" channel="inputFromKafka">
        <int:poller fixed-delay="1" time-unit="MILLISECONDS" />
    </int-kafka:inbound-channel-adapter>
    <task:executor id="kafkaMessageExecutor" pool-size="8" keep-alive="120" queue-capacity="500" />
    <bean id="kafkaDecoder"
        class="org.springframework.integration.kafka.serializer.common.StringDecoder" />
 
    <bean id="consumerProperties"
        class="org.springframework.beans.factory.config.PropertiesFactoryBean">
        <property name="properties">
            <props>
                <prop key="auto.offset.reset">smallest</prop>
                <prop key="socket.receive.buffer.bytes">10485760</prop> <!-- 10M -->
                <prop key="fetch.message.max.bytes">5242880</prop>
                <prop key="auto.commit.interval.ms">1000</prop>
            </props>
        </property>
    </bean>
    <!-- 消息接收的BEEN -->
    <bean id="kafkaConsumerService" class="com.sunney.service.impl.KafkaConsumerService" />
    <!-- 指定接收的方法 -->
    <int:outbound-channel-adapter channel="inputFromKafka"
        ref="kafkaConsumerService" method="processMessage" />
 
    <int-kafka:consumer-context id="consumerContext"
        consumer-timeout="1000" zookeeper-connect="zookeeperConnect"
        consumer-properties="consumerProperties">
        <int-kafka:consumer-configurations>
            <int-kafka:consumer-configuration
                group-id="default1" value-decoder="kafkaDecoder" key-decoder="kafkaDecoder"
                max-messages="5000">
                <!-- 两个TOPIC配置 -->
                <int-kafka:topic id="mytopic" streams="4" />
                <int-kafka:topic id="sunneytopic" streams="4" />
            </int-kafka:consumer-configuration>
        </int-kafka:consumer-configurations>
    </int-kafka:consumer-context>
</beans>
  

  2、spring-kafka-producer.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://www.springframework.org/schema/integration"
    xmlns:int-kafka="http://www.springframework.org/schema/integration/kafka"
    xmlns:task="http://www.springframework.org/schema/task"
    xsi:schemaLocation="http://www.springframework.org/schema/integration/kafka http://www.springframework.org/schema/integration/kafka/spring-integration-kafka.xsd
        http://www.springframework.org/schema/integration http://www.springframework.org/schema/integration/spring-integration.xsd
        http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task.xsd">
     
   <!-- commons config -->
    <bean id="stringSerializer" class="org.apache.kafka.common.serialization.StringSerializer"/>
    <bean id="kafkaEncoder" class="org.springframework.integration.kafka.serializer.avro.AvroReflectDatumBackedKafkaEncoder">
        <constructor-arg value="java.lang.String" />
    </bean>
    <bean id="producerProperties"
        class="org.springframework.beans.factory.config.PropertiesFactoryBean">
        <property name="properties">
            <props>
                <prop key="topic.metadata.refresh.interval.ms">3600000</prop>
                <prop key="message.send.max.retries">5</prop>
                <prop key="serializer.class">kafka.serializer.StringEncoder</prop>
                <prop key="request.required.acks">1</prop>
            </props>
        </property>
    </bean>
     
    <!-- topic test config  -->
     
    <int:channel id="kafkaTopicTest">
        <int:queue />
    </int:channel>
     
    <int-kafka:outbound-channel-adapter
        id="kafkaOutboundChannelAdapterTopicTest" kafka-producer-context-ref="producerContextTopicTest"
        auto-startup="true" channel="kafkaTopicTest" order="3">
        <int:poller fixed-delay="1000" time-unit="MILLISECONDS"
            receive-timeout="1" task-executor="taskExecutor" />
    </int-kafka:outbound-channel-adapter>
    <task:executor id="taskExecutor" pool-size="5"
        keep-alive="120" queue-capacity="500" />
    <!-- <bean id="kafkaEncoder"
        class="org.springframework.integration.kafka.serializer.avro.AvroSpecificDatumBackedKafkaEncoder">
        <constructor-arg value="com.company.AvroGeneratedSpecificRecord" />
    </bean> -->
    <int-kafka:producer-context id="producerContextTopicTest"
        producer-properties="producerProperties">
        <int-kafka:producer-configurations>
            <!-- 多个topic配置 -->
            <int-kafka:producer-configuration
                broker-list="192.168.1.237:9090,192.168.1.237:9091,192.168.1.237:9092"
                key-serializer="stringSerializer"
                value-class-type="java.lang.String"
                value-serializer="stringSerializer"
                topic="mytopic" />
            <int-kafka:producer-configuration
                broker-list="192.168.1.237:9090,192.168.1.237:9091,192.168.1.237:9092"
                key-serializer="stringSerializer"
                value-class-type="java.lang.String"
                value-serializer="stringSerializer"
                topic="sunneytopic"/>
        </int-kafka:producer-configurations>
    </int-kafka:producer-context>
</beans>

  3、发消息接口 KafkaService

package com.sunney.service;
 
/**
 * 类KafkaService.java的实现描述:发消息接口类
 * @author Sunney 2016年4月30日 上午11:30:53
 */
public interface KafkaService {
    /**
     * 发消息
     * @param topic 主题
     * @param obj 发送内容
     */
    public void sendUserInfo(String topic, Object obj);
}

  4、发消息实现类 KafkaServiceImpl  

package com.sunney.service.impl;
 
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.integration.kafka.support.KafkaHeaders;
import org.springframework.integration.support.MessageBuilder;
import org.springframework.messaging.MessageChannel;
import org.springframework.stereotype.Service;
 
import com.sunney.service.KafkaService;
 
/**
 * 类KafkaServiceImpl.java的实现描述:发消息实现类
 * @author Sunney 2016年4月30日 上午11:31:13
 */
@Service("kafkaService")
public class KafkaServiceImpl  implements KafkaService{
 
    @Autowired
    @Qualifier("kafkaTopicTest")
    MessageChannel channel;
 
    public void sendUserInfo(String topic, Object obj) {
        channel.send(MessageBuilder.withPayload(obj)
                                    .setHeader(KafkaHeaders.TOPIC,topic)
                                    .build());
    }
 
}

  5、消费接收类KafkaConsumerService 

package com.sunney.service.impl;
 
import java.util.Collection;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
 
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
 
import com.alibaba.fastjson.JSON;
import com.sunney.service.UserDto;
 
/**
 * 类KafkaConsumerService.java的实现描述:消费接收类
 *
 * @author Sunney 2016年4月30日 上午11:46:14
 */
public class KafkaConsumerService {
 
    static final Logger logger = LoggerFactory.getLogger(KafkaConsumerService.class);
 
    public void processMessage(Map<String, Map<Integer, String>> msgs) {
        logger.info("===============processMessage===============");
        for (Map.Entry<String, Map<Integer, String>> entry : msgs.entrySet()) {
            logger.info("============Topic:" + entry.getKey());
            LinkedHashMap<Integer, String> messages = (LinkedHashMap<Integer, String>) entry.getValue();
            Set<Integer> keys = messages.keySet();
            for (Integer i : keys)
                logger.info("======Partition:" + i);
            Collection<String> values = messages.values();
            for (Iterator<String> iterator = values.iterator(); iterator.hasNext();) {
                String message = "["+iterator.next()+"]";
                logger.info("=====message:" + message);
                List<UserDto> userList = JSON.parseArray(message, UserDto.class); 
                logger.info("=====userList.size:" + userList.size());
 
            }
 
        }
    }
 
}

  6、pom

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.integration</groupId>
            <artifactId>spring-integration-kafka</artifactId>
            <version>1.3.0.RELEASE</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.11</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId> org.apache.avro</groupId>
            <artifactId>avro</artifactId>
            <version>1.7.7</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.7</version>
        </dependency>
    </dependencies>

  六、源代码地址:https://github.com/sunney2010/kafka-demo

     七、遇到的问题

         1、消费端口收不到消息

              spring-kafka-consumer.xml的auto-startup设置为true

高吞吐量的分布式发布订阅消息系统Kafka--spring-integration-kafka的应用

标签:

原文地址:http://www.cnblogs.com/wzxblog/p/5731668.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!