码迷,mamicode.com
首页 > 编程语言 > 详细

Python函数式编程——filter()、map()、reduce()

时间:2016-08-07 15:19:22      阅读:196      评论:0      收藏:0      [点我收藏+]

标签:

提起map和reduce想必大家并不陌生,Google公司2003年提出了一个名为MapReduce的编程模型[1],用于处理大规模海量数据,并在之后广泛的应用于Google的各项应用中,2006年Apache的Hadoop项目[2]正式将MapReduce纳入到项目中。

好吧,闲话少说,今天要介绍的是Python函数式编程中的另外两个内建函数map()reduce(),而不是Google的MapReduce。

1.filter()

格式:filter( func, seq )

该内建函数的作用相当于一个筛子。func函数是一个布尔函数,filter()调用这个布尔函数,将每个seq中的元素依次过一遍筛子,选出使func返回值是Ture的元素的序列。

下面举一个例子进行说明,假设我这里有一些学生的成绩,现在要选出成绩在[80, 90)区间里的成绩。下面的例子讲使用不同的方法进行实现。

 

scores = [55, 80, 83, 64, 91, 100, 90, 79]
 
def score_filter( score ):
  return score >=80 and score < 90
 
# 普通方法
filtered_score = []
 
for each in scores:
  if score_filter( each ):
    filtered_score.append( each )
 
print filtered_score  # [80, 83]
 
# filter()方法
print filter( score_filter, scores )  # [80, 83]
 
# 列表解析list comprehension方法
print [score for score in scores if score >=80 and score < 90]  # [80, 83]

 

这里还使用了一种列表解析的方法,虽然看起来没有filter()的方法简洁,但是相对于普通方法也足够简洁了,而且列表解析的方法不止可以适用于filter()的情况,也可以适用于更多的情况,并且可以在列表解析中使用更复杂的条件,灵活性更好。

2.map()

格式:map( func, seq1[, seq2...] )

Python函数式编程中的map()函数是将func作用于seq中的每一个元素,并用一个列表给出返回值。如果func为None,作用同zip()

当seq只有一个时,将func函数作用于这个seq的每个元素上,得到一个新的seq。下图说明了只有一个seq的时候map()函数是如何工作的(本文图片来源:《Core Python Programming (2nd edition)》)。

技术分享

可以看出,seq中的每个元素都经过了func函数的作用,得到了func(seq[n])组成的列表。

下面举一个例子进行说明。假设我们想要得到一个列表中数字%3的余数,那么可以写成下面的代码。

# 使用map
print map( lambda x: x%3, range(6) )  # [0, 1, 2, 0, 1, 2]

#使用列表解析
print [x%3 for x in range(6)]  # [0, 1, 2, 0, 1, 2]

这里又和上次的filter()一样,使用了列表解析的方法代替map执行。那么,什么时候是列表解析无法代替map的呢?

原来,当seq多于一个时,map可以并行地对每个seq执行如下图所示的过程:

技术分享

也就是说每个seq的同一位置的元素在执行过一个多元的func函数之后,得到一个返回值,这些返回值放在一个结果列表中。

下面的例子是求两个列表对应元素的积,可以想象,这是一种可能会经常出现的状况,而如果不是用map的话,就要使用一个for循环,依次对每个位置执行该函数。

print map( lambda x, y: x * y, [1, 2, 3], [4, 5, 6] )  # [4, 10, 18]

上面是返回值是一个值的情况,实际上也可以是一个元组。下面的代码不止实现了乘法,也实现了加法,并把积与和放在一个元组中。

print map( lambda x, y: ( x * y, x + y), [1, 2, 3], [4, 5, 6] )  # [(4, 5), (10, 7), (18, 9)]

需要注意的是,不同长度的多个seq是无法执行map函数的,会出现类型错误。

 

3.reduce()

格式:reduce( func, seq[, init] )

reduce函数即为化简,它是这样一个过程:每次迭代,将上一次的迭代结果(第一次时为init的元素,如没有init则为seq的第一个元素)与下一个元素一同执行一个二元的func函数。在reduce函数中,init是可选的,如果使用,则作为第一次迭代的第一个元素使用。

简单来说,可以用这样一个形象化的式子来说明:
reduce( func, [1, 2,3] ) = func( func(1, 2), 3)

下面是reduce函数的工作过程图:

技术分享

举个例子来说,阶乘是一个常见的数学方法,Python中并没有给出一个阶乘的内建函数,我们可以使用reduce实现一个阶乘的代码。

n = 5
print reduce(lambda x, y: x * y, range(1, n + 1))  # 120

那么,如果我们希望得到2倍阶乘的值呢?这就可以用到init这个可选参数了。

m = 2
n = 5
print reduce( lambda x, y: x * y, range( 1, n + 1 ), m )  # 240

Python函数式编程——filter()、map()、reduce()

标签:

原文地址:http://www.cnblogs.com/xhwang/p/5746027.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!