标签:
前言
先说一些题外的东西吧。受到春跃大神的影响和启发,推荐了这个算法公开课给我,晚上睡觉前点开一看发现课还有两天要开始,本着要好好系统地学习一下算法,于是就爬起来拉上两个小伙伴组团报名了。今天听了第一节课,说真的很实用,特别是对于我这种算法不扎实,并且又想找工作,提高自己的情况。 那就不多说废话了,以后每周都写个总结吧,就趁着这一个月好好把算法提高一下。具体就从:课堂笔记、leetcode和lintcode相关习题、hdu和poj相关习题三个方面来写吧。希望自己能够坚持下来,给大家分享一些好的东西。
outline:
课堂笔记
二分查找这类题以前接触的也算是比较多的了,所以还算相对熟悉,但今天听老师讲过以后,还是觉得有了很多新的认识,最有印象的就是令狐老师讲的三个境界:
1. 第一境界:会写程序
这个境界我自认为在刷了那么多leetcode之后算是没有问题的了,套了不少模版,虽然还有一些边界问题考虑不周全,但是经过调试,应该没有什么问题,经过几次面试,也面到过Binary Seach。想必大家也有很好的基础。 正如老师说的,这个境界还是存在一些问题,比如解决二分程序的三大痛点、权衡递归与非递归。 对于第一个问题,其实就是start和end的位置选取,比如容易进入死循环,或者容易分不清楚到底应该是start = mid还是start = mid+ 1等。以下给出一个代码模版,这个也是我之前写二分问题经常会写的样子:
int start = 0, end = nums.size() - 1; while (start < end){ int mid = (start + end)/2; if (...) {...} else if (...) {...} else {...} }
想必大家都会把循环条件写成start < end或者start <= end这样的,这样在一些情况下也确实没有问题(这里直接上一个题):
Find First Position of Target
http://www.lintcode.com/zh-cn/problem/first-position-of-target/
给定一个排序的整数数组(升序)和一个要查找的整数
target
,用O(logn)
的时间查找到target第一次出现的下标(从0开始),如果target不存在于数组中,返回-1
。样例
在数组
[1, 2, 3, 3, 4, 5, 10]
中二分查找3
,返回2
。
这个题应该是Binary Search最基础的题,直接套用模版就可以,以下是这个题的代码(Bug Free):
int binarySearch(vector<int> &array, int target) { if (!array.size()) return -1; int start = 0, end = array.size() - 1; while (start < end) { int mid = (start + end) >> 1; if (array[mid] < target) { start = mid + 1; } else if (array[mid] > target) { end = mid -1; } else { end = mid; } } if (array[start] == target) return start; return -1; }
因为比较简单,就不再多说了,这里需要注意的几个点是,int mid = (start + end) >>1;其实就是int mid = (start + end)/1;因为在面试中如果会位运算的话,还是能够给面试官留下很好的印象。有的人说直接加起来除以2会溢出,其实start和end不会大到超过int的最大值的,因为一个vector也不会去开辟那么大的空间,但是写成`int mid = (end - start)/2 + start;`也能显得你比较不错。综上,两种方法都可以。 在这个题中因为是找第一个与target相等的值,所以用这种方法不会出问题,但是在考虑下面的题,就会出现问题:
Find Last Position of Target
http://www.lintcode.com/zh-cn/problem/last-position-of-target/
给一个升序数组,找到target最后一次出现的位置,如果没出现过返回
-1
样例
给出 [1, 2, 2, 4, 5, 5].
target =
2
, 返回2
.target =
5
, 返回5
.target =
6
, 返回-1
.
错误代码如下:
while (start < end) { int mid = ( start + end ) >>1; if (A[mid] < target) {
start = mid + 1;
} else if ( A[mid] > target) {
end = mid -1;
} else {
start = mid;
} }
这里如果这样写的话,代码就会进入死循环,因为在求mid的时候是向左边取整的。考虑这样的一个情况[...,5,5],假设target为5,那么start就会一直向右靠近,最后到n-2的位置,而end此时为n-1,再次进入循环mid等于n-2,所以就进入了死循环。 根据课上老师所说的,建议大家写成start + 1 < end,最后再判断start和end(按照所需先后判断)即可,这种写法适用于所有的情况,不容易出现问题。 ps. 这里把条件写成如下也可行:
while (start + 1 < end) { int mid = (start + end)>>1; if (A[mid] > target) {
end = mid; } else {
start = mid;
} }
因为start和end不管是否包括mid值都不影响最后的结果。 这个境界需要理解一个重点: 二分法实际上就是把区间变小的问题,把一个长度为n的区间变为n/2,然后再变小,即:
T(n) = T(n/2) + O(1) = O(logn)
通过O(1)的时间,把规模为n的问题变为n/2 当面试的时候,有O(n)的解,如果面试官需要你进一步优化,那么很大可能就是需要用二分O(logn)的方法来做。 实际上的步骤:
**区间缩小-> 剩下两个下标->判断两个下表**
**注:不要把缩小区间和得到答案放在一个循环里面,容易出问题,增加难度**
2. 第二境界:找到第一个/最后一个满足某个条件的位置/值
写出一个高效的算法来搜索 m × n矩阵中的值。
这个矩阵具有以下特性:
- 每行中的整数从左到右是排序的。
- 每行的第一个数大于上一行的最后一个整数。
样例
考虑下列矩阵:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
给出
target = 3
,返回true
bool searchMatrix(vector<vector<int> > &matrix, int target) { if (!matrix.size()||!matrix[0].size()) return false; int start = 0, end = matrix.size() - 1; while (start + 1 < end) { int mid = (end - start)/2 + start; if (matrix[mid][0] < target) start = mid; else end = mid; } int new_start = 0,new_end = matrix[0].size()-1; int index = matrix[end][0] <= target ?end:start; while (new_start + 1 < new_end) { int mid = (new_end - new_start)/2 + new_start; if (matrix[index][mid] > target) new_end = mid; else if (matrix[index][mid] < target) new_start = mid; else return true; } if (matrix[index][new_end] == target) return true; if (matrix[index][new_start] == target) return true; return false; }
bool searchMatrix(vector<vector<int> > &matrix, int target) { if (!matrix.size()||!matrix[0].size()) return false; int m = matrix.size(); int n = matrix[0].size(); int start = 0, end = n * m - 1; while (start + 1 < end) { int mid = (end - start)/2 + start; int x = mid / n; int y = mid % n; if (matrix[x][y] > target) { end = mid; } else { start = mid; } } int x = start / n; int y = start % n; if (matrix[x][y] == target) { return true; } x = end / n; y = end % n; if (matrix[x][y] == target) { return true; } return false; }
假设一个旋转排序的数组其起始位置是未知的(比如0 1 2 4 5 6 7 可能变成是4 5 6 7 0 1 2)。
你需要找到其中最小的元素。
你可以假设数组中不存在重复的元素。
样例
给出[4,5,6,7,0,1,2] 返回 0
int findMin(vector<int> &num) { if (!num.size()) return 0; int start = 0, end = num.size() - 1; int target = num[end]; while (start + 1 < end) { int mid = (end - start)/2 + start; if (num[mid] <= target) { end = mid; } else { start = mid; } } if (num[start] <= target) { return num[start]; } else { return num[end]; } }
给出一个整数数组(size为n),其具有以下特点:
- 相邻位置的数字是不同的
- A[0] < A[1] 并且 A[n - 2] > A[n - 1]
假定P是峰值的位置则满足
样例A[P] > A[P-1]
且A[P] > A[P+1]
,返回数组中任意一个峰值的位置。给出数组
[1, 2, 1, 3, 4, 5, 7, 6]
返回1
, 即数值 2 所在位置, 或者6
, 即数值 7 所在位置.
第一种情况:当前点就是峰值,直接返回当前值。
第二种情况:当前点是谷点,不论往那边走都可以找到峰值。
第三种情况:当前点处于下降的中间,往左边走可以到达峰值。
第四种情况:当前点处于上升的中间,往右边走可以达到峰值。
分析了四种情况,那么就容易把有答案的一半保留下来了,接下来就判断是否能够找到峰值即可。代码如下(Bug Free):
int findPeak(vector<int> A) { if (!A.size()) return 0; int start = 0; int end = A.size() -1; while (start + 1 < end) { int mid = (end - start)/2 + start; if (A[mid] > A[mid - 1] && A[mid] > A[mid + 1]) { return mid; } else if (A[mid] <= A[mid+1] && A[mid] >= A[mid -1]) { start = mid; } else if (A[mid] >= A[mid+1] && A[mid] <= A[mid -1]) { end = mid; } else { start = mid; } } if (start >= 1 && A[start] > A[start - 1] && A[start] > A[start + 1]) return start;
if (end <= A.size()-2 && A[end] > A[end-1] && A[end] > A[end+1]) return end; }
这道题的难点其实就是把各种情况考虑一下,然后把有答案的部分保留下来,基本上就没有问题了。
总结
本文只是挑选了一些比较好的课上的题进行了讲解,还有部分题没有写出来,也会在后续的博客中。
对于我个人而言,二分法算是比较熟悉的一个方法,之前在做微软校招第一题的时候用的就是二分的方法。在面试中也是比较常用到的一种方法,因为总有那么一种说法嘛:比0(n)还要快的算法复杂度,那必须就是0(logn)了(这里说的是在一般的面试情况下)那么O(logn)就必然要考虑二分的方法来做了。一般都会与一些排序的序列、在一段有规则的序列等情况中找到符合某个条件的位置/值。这个模块还是需要多练习,然后就能够很好上手了,如果想要能够在算法面试中有更好的突破,还是需要去解决一些难一点的题,诸如poj或者hdu这样的应用场景的题。
这也是本人第一次认真写一个技术长文,虽然也没有什么特别深奥的东西,读到这里说明你也是很给我面子的了,之后还会继续更新一些自己的想法和一些好的题目,希望大家多多支持!
标签:
原文地址:http://www.cnblogs.com/Raising-Sun/p/5747072.html