码迷,mamicode.com
首页 > 移动开发 > 详细

Android深入浅出之 AudioTrack分析

时间:2016-08-08 12:18:06      阅读:556      评论:0      收藏:0      [点我收藏+]

标签:

Android深入浅出之Audio

第一部分 AudioTrack分析

一 目的

本文的目的是通过从Audio系统来分析Android的代码,包括Android自定义的那套机制和一些常见类的使用,比如Thread,MemoryBase等。

分析的流程是:

l         先从API层对应的某个类开始,用户层先要有一个简单的使用流程。

l         根据这个流程,一步步进入到JNI,服务层。在此过程中,碰到不熟悉或者第一次见到的类或者方法,都会解释。也就是深度优先的方法。

1.1 分析工具

分析工具很简单,就是sourceinsight和android的API doc文档。当然还得有android的源代码。我这里是基于froyo的源码。

注意,froyo源码太多了,不要一股脑的加入到sourceinsight中,只要把framwork目录下的源码加进去就可以了,后续如要用的话,再加别的目录。

二 Audio系统

先看看Audio里边有哪些东西?通过Android的SDK文档,发现主要有三个:

l         AudioManager:这个主要是用来管理Audio系统的

l         AudioTrack:这个主要是用来播放声音的

l         AudioRecord:这个主要是用来录音的

其中AudioManager的理解需要考虑整个系统上声音的策略问题,例如来电话铃声,短信铃声等,主要是策略上的问题。一般看来,最简单的就是播放声音了。所以我们打算从AudioTrack开始分析。

三 AudioTrack(JAVA层)

JAVA的AudioTrack类的代码在:

framework\base\media\java\android\media\AudioTrack.java中。

3.1 AudioTrack API的使用例子

先看看使用例子,然后跟进去分析。至于AudioTrack的其他使用方法和说明,需要大家自己去看API文档了。

//根据采样率,采样精度,单双声道来得到frame的大小。

int bufsize = AudioTrack.getMinBufferSize(8000,//每秒8K个点

  AudioFormat.CHANNEL_CONFIGURATION_STEREO,//双声道

AudioFormat.ENCODING_PCM_16BIT);//一个采样点16比特-2个字节

//注意,按照数字音频的知识,这个算出来的是一秒钟buffer的大小。

//创建AudioTrack

AudioTrack trackplayer = new AudioTrack(AudioManager.STREAM_MUSIC, 8000,

  AudioFormat.CHANNEL_CONFIGURATION_ STEREO,

  AudioFormat.ENCODING_PCM_16BIT,

  bufsize,

AudioTrack.MODE_STREAM);//

 trackplayer.play() ;//开始

trackplayer.write(bytes_pkg, 0, bytes_pkg.length) ;//往track中写数据

….

trackplayer.stop();//停止播放

trackplayer.release();//释放底层资源。

 

这里需要解释下两个东西:

1 AudioTrack.MODE_STREAM的意思:

AudioTrack中有MODE_STATIC和MODE_STREAM两种分类。STREAM的意思是由用户在应用程序通过write方式把数据一次一次得写到audiotrack中。这个和我们在socket中发送数据一样,应用层从某个地方获取数据,例如通过编解码得到PCM数据,然后write到audiotrack。

这种方式的坏处就是总是在JAVA层和Native层交互,效率损失较大。

而STATIC的意思是一开始创建的时候,就把音频数据放到一个固定的buffer,然后直接传给audiotrack,后续就不用一次次得write了。AudioTrack会自己播放这个buffer中的数据。

这种方法对于铃声等内存占用较小,延时要求较高的声音来说很适用。

2 StreamType

这个在构造AudioTrack的第一个参数中使用。这个参数和Android中的AudioManager有关系,涉及到手机上的音频管理策略。

Android将系统的声音分为以下几类常见的(未写全):

l         STREAM_ALARM:警告声

l         STREAM_MUSCI:音乐声,例如music等

l         STREAM_RING:铃声

l         STREAM_SYSTEM:系统声音

l         STREAM_VOCIE_CALL:电话声音

为什么要分这么多呢?以前在台式机上开发的时候很少知道有这么多的声音类型,不过仔细思考下,发现这样做是有道理的。例如你在听music的时候接到电话,这个时候music播放肯定会停止,此时你只能听到电话,如果你调节音量的话,这个调节肯定只对电话起作用。当电话打完了,再回到music,你肯定不用再调节音量了。

其实系统将这几种声音的数据分开管理,所以,这个参数对AudioTrack来说,它的含义就是告诉系统,我现在想使用的是哪种类型的声音,这样系统就可以对应管理他们了。

 

3.2 分析之getMinBufferSize

AudioTrack的例子就几个函数。先看看第一个函数:

AudioTrack.getMinBufferSize(8000,//每秒8K个点

  AudioFormat.CHANNEL_CONFIGURATION_STEREO,//双声道

AudioFormat.ENCODING_PCM_16BIT);

----->AudioTrack.JAVA

 

//注意,这是个static函数

技术分享
static public int getMinBufferSize(int sampleRateInHz, int channelConfig, int audioFormat) {

        int channelCount = 0;

        switch(channelConfig) {

        case AudioFormat.CHANNEL_OUT_MONO:

        case AudioFormat.CHANNEL_CONFIGURATION_MONO:

            channelCount = 1;

            break;

        case AudioFormat.CHANNEL_OUT_STEREO:

        case AudioFormat.CHANNEL_CONFIGURATION_STEREO:

            channelCount = 2;--->看到了吧,外面名字搞得这么酷,其实就是指声道数

            break;

        default:

            loge("getMinBufferSize(): Invalid channel configuration.");

            return AudioTrack.ERROR_BAD_VALUE;

        }

    //目前只支持PCM8和PCM16精度的音频   

        if ((audioFormat != AudioFormat.ENCODING_PCM_16BIT)

            && (audioFormat != AudioFormat.ENCODING_PCM_8BIT)) {

            loge("getMinBufferSize(): Invalid audio format.");

            return AudioTrack.ERROR_BAD_VALUE;

        }

      //ft,对采样频率也有要求,太低或太高都不行,人耳分辨率在20HZ到40KHZ之间

        if ( (sampleRateInHz < 4000) || (sampleRateInHz > 48000) ) {

            loge("getMinBufferSize(): " + sampleRateInHz +"Hz is not a supported sample rate.");

            return AudioTrack.ERROR_BAD_VALUE;

        }

       //调用native函数,够烦的,什么事情都搞到JNI层去。

        int size = native_get_min_buff_size(sampleRateInHz, channelCount, audioFormat);

        if ((size == -1) || (size == 0)) {

            loge("getMinBufferSize(): error querying hardware");

            return AudioTrack.ERROR;

        }

        else {

            return size;

        }
View Code

 

native_get_min_buff_size--->在framework/base/core/jni/android_media_track.cpp中实现。(不了解JNI的一定要学习下,否则只能在JAVA层搞,太狭隘了。)最终对应到函数

技术分享View Code

 

getMinBufSize函数完了后,我们得到一个满足最小要求的缓冲区大小。这样用户分配缓冲区就有了依据。下面就需要创建AudioTrack对象了

3.3 分析之new AudioTrack

先看看调用函数:

AudioTrack trackplayer = new AudioTrack(

AudioManager.STREAM_MUSIC,

8000,

  AudioFormat.CHANNEL_CONFIGURATION_ STEREO,

  AudioFormat.ENCODING_PCM_16BIT,

  bufsize,

AudioTrack.MODE_STREAM);

 

其实现代码在AudioTrack.java中。

技术分享
public AudioTrack(int streamType, int sampleRateInHz, int channelConfig, int audioFormat,

            int bufferSizeInBytes, int mode)

    throws IllegalArgumentException {

        mState = STATE_UNINITIALIZED;

       

        // 获得主线程的Looper,这个在MediaScanner分析中已经讲过了

        if ((mInitializationLooper = Looper.myLooper()) == null) {

            mInitializationLooper = Looper.getMainLooper();

        }

 

    //检查参数是否合法之类的,可以不管它

        audioParamCheck(streamType, sampleRateInHz, channelConfig, audioFormat, mode);

   //我是用getMinBufsize得到的大小,总不会出错吧?

        audioBuffSizeCheck(bufferSizeInBytes);

 

        // 调用native层的native_setup,把自己的WeakReference传进去了

     //不了解JAVA WeakReference的可以上网自己查一下,很简单的

        int initResult = native_setup(new WeakReference<AudioTrack>(this),

                mStreamType, 这个值是AudioManager.STREAM_MUSIC

 mSampleRate, 这个值是8000

mChannels, 这个值是2

mAudioFormat,这个值是AudioFormat.ENCODING_PCM_16BIT

                mNativeBufferSizeInBytes, //这个是刚才getMinBufSize得到的

mDataLoadMode);DataLoadMode是MODE_STREAM

         ....

}
View Code

 

 

上面函数调用最终进入了JNI层android_media_AudioTrack.cpp下面的函数

技术分享View Code

 

1 AudioTrackJniStorage详解

这个类其实就是一个辅助类,但是里边有一些知识很重要,尤其是Android封装的一套共享内存的机制。这里一并讲解,把这块搞清楚了,我们就能轻松得在两个进程间进行内存的拷贝。

AudioTrackJniStorage的代码很简单。

struct audiotrack_callback_cookie {

    jclass      audioTrack_class;

    jobject     audioTrack_ref;

 }; 

 

 cookie其实就是把JAVA中的一些东西保存了下,没什么特别的意义

class AudioTrackJniStorage {

    public:

        sp<MemoryHeapBase>         mMemHeap;//这两个Memory很重要

        sp<MemoryBase>             mMemBase;

        audiotrack_callback_cookie mCallbackData;

        int                        mStreamType;

 

      bool allocSharedMem(int sizeInBytes) {

        mMemHeap = new MemoryHeapBase(sizeInBytes, 0, "AudioTrack Heap Base");

        mMemBase = new MemoryBase(mMemHeap, 0, sizeInBytes);

//注意用法,先弄一个HeapBase,再把HeapBase传入到MemoryBase中去。

        return true;

    }

};

 

2 MemoryHeapBase

MemroyHeapBase也是Android搞的一套基于Binder机制的对内存操作的类。既然是Binder机制,那么肯定有一个服务端(Bnxxx),一个代理端Bpxxx。看看MemoryHeapBase定义:

class MemoryHeapBase : public virtual BnMemoryHeap

{

  果然,从BnMemoryHeap派生,那就是Bn端。这样就和Binder挂上钩了

//Bp端调用的函数最终都会调到Bn这来

对Binder机制不了解的,可以参考:

http://blog.csdn.net/Innost/archive/2011/01/08/6124685.aspx

  有好几个构造函数,我们看看我们使用的:

MemoryHeapBase::MemoryHeapBase(size_t size, uint32_t flags, char const * name)

    : mFD(-1), mSize(0), mBase(MAP_FAILED), mFlags(flags),

      mDevice(0), mNeedUnmap(false)

{

    const size_t pagesize = getpagesize();

size = ((size + pagesize-1) & ~(pagesize-1));

//创建共享内存,ashmem_create_region这个是系统提供的,可以不管它

//设备上打开的是/dev/ashmem设备,而Host上打开的是一个tmp文件

int fd = ashmem_create_region(name == NULL ? "MemoryHeapBase" : name, size);

mapfd(fd, size);//把刚才那个fd通过mmap方式得到一块内存

//不明白得去man mmap看看

 

mapfd完了后,mBase变量指向内存的起始位置, mSize是分配的内存大小,mFd是

ashmem_create_region返回的文件描述符

 

}

MemoryHeapBase提供了一下几个函数,可以获取共享内存的大小和位置。

getBaseID()--->返回mFd,如果为负数,表明刚才创建共享内存失败了

getBase()->返回mBase,内存位置

  getSize()->返回mSize,内存大小

有了MemoryHeapBase,又搞了一个MemoryBase,这又是一个和Binder机制挂钩的类。

唉,这个估计是一个在MemoryHeapBase上的方便类吧?因为我看见了offset

那么估计这个类就是一个能返回当前Buffer中写位置(就是offset)的方便类

这样就不用用户到处去计算读写位置了。

class MemoryBase : public BnMemory

{

public:

    MemoryBase(const sp<IMemoryHeap>& heap, ssize_t offset, size_t size);

    virtual sp<IMemoryHeap> getMemory(ssize_t* offset, size_t* size) const;

protected:

    size_t getSize() const { return mSize; }

    ssize_t getOffset() const { return mOffset; }

    const sp<IMemoryHeap>& getHeap() const { return mHeap; }

};

 

好了,明白上面两个MemoryXXX,我们可以猜测下大概的使用方法了。

l         BnXXX端先分配BnMemoryHeapBase和BnMemoryBase,

l         然后把BnMemoryBase传递到BpXXX

l         BpXXX就可以使用BpMemoryBase得到BnXXX端分配的共享内存了。

注意,既然是进程间共享内存,那么Bp端肯定使用memcpy之类的函数来操作内存,这些函数是没有同步保护的,而且Android也不可能在系统内部为这种共享内存去做增加同步保护。所以看来后续在操作这些共享内存的时候,肯定存在一个跨进程的同步保护机制。我们在后面讲实际播放的时候会碰到。

另外,这里的SharedBuffer最终会在Bp端也就是AudioFlinger那用到。

3.4 分析之play和write

JAVA层到这一步后就是调用play和write了。JAVA层这两个函数没什么内容,都是直接转到native层干活了。

先看看play函数对应的JNI函数

static void

android_media_AudioTrack_start(JNIEnv *env, jobject thiz)

{

//看见没,从JAVA那个AudioTrack对象获取保存的C++层的AudioTrack对象指针

//从int类型直接转换成指针。要是以后ARM变成64位平台了,看google怎么改!

    AudioTrack *lpTrack = (AudioTrack *)env->GetIntField(

        thiz, javaAudioTrackFields.nativeTrackInJavaObj);

    lpTrack->start(); //这个以后再说

}

 

下面是write。我们写的是short数组,

static jint

android_media_AudioTrack_native_write_short(JNIEnv *env,  jobject thiz,

                                                  jshortArray javaAudioData,

                                                  jint offsetInShorts,

jint sizeInShorts,

                                                  jint javaAudioFormat) {

    return (android_media_AudioTrack_native_write(env, thiz,

                                                 (jbyteArray) javaAudioData,

                                                 offsetInShorts*2, sizeInShorts*2,

                                                 javaAudioFormat)

            / 2);

}

 

烦人,又根据Byte还是Short封装了下,最终会调到重要函数writeToTrack去

jint writeToTrack(AudioTrack* pTrack, jint audioFormat, jbyte* data,

                  jint offsetInBytes, jint sizeInBytes) {

      ssize_t written = 0;

    // regular write() or copy the data to the AudioTrack‘s shared memory?

if (pTrack->sharedBuffer() == 0) {

//创建的是流的方式,所以没有共享内存在track中

//还记得我们在native_setup中调用的set吗?流模式下AudioTrackJniStorage可没创建

//共享内存

        written = pTrack->write(data + offsetInBytes, sizeInBytes);

    } else {

        if (audioFormat == javaAudioTrackFields.PCM16) {

            // writing to shared memory, check for capacity

            if ((size_t)sizeInBytes > pTrack->sharedBuffer()->size()) {

                sizeInBytes = pTrack->sharedBuffer()->size();

            }

           //看见没?STATIC模式的,就直接把数据拷贝到共享内存里

          //当然,这个共享内存是pTrack的,是我们在set时候把AudioTrackJniStorage的

//共享设进去的

            memcpy(pTrack->sharedBuffer()->pointer(),

data + offsetInBytes, sizeInBytes);

            written = sizeInBytes;

        } else if (audioFormat == javaAudioTrackFields.PCM8) {

           PCM8格式的要先转换成PCM16

           

    }

    return written;

}

 

到这里,似乎很简单啊,JAVA层的AudioTrack,无非就是调用write函数,而实际由JNI层的C++ AudioTrack write数据。反正JNI这层是再看不出什么有意思的东西了。

四 AudioTrack(C++层)

接上面的内容,我们知道在JNI层,有以下几个步骤:

l         new了一个AudioTrack

l         调用set函数,把AudioTrackJniStorage等信息传进去

l         调用了AudioTrack的start函数

l         调用AudioTrack的write函数

那么,我们就看看真正干活的的C++AudioTrack吧。

AudioTrack.cpp位于framework\base\libmedia\AudioTrack.cpp

4.1 new AudioTrack()和set调用

JNI层调用的是最简单的构造函数:

AudioTrack::AudioTrack()

    : mStatus(NO_INIT) //把状态初始化成NO_INIT。Android大量使用了设计模式中的state。

{

}

 

接下来调用set。我们看看JNI那set了什么

  lpTrack->set(

            atStreamType, //应该是Music吧

            sampleRateInHertz,//8000

            format,// 应该是PCM_16吧

            channels,//立体声=2

            frameCount,//

            0,// flags

            audioCallback, //JNI中的一个回调函数

&(lpJniStorage->mCallbackData),//回调函数的参数

            0,// 通知回调函数,表示AudioTrack需要数据,不过暂时没用上

            0,//共享buffer地址,stream模式没有

            true);//回调线程可以调JAVA的东西

 

那我们看看set函数把。

status_t AudioTrack::set(

        int streamType,

        uint32_t sampleRate,

        int format,

        int channels,

        int frameCount,

        uint32_t flags,

        callback_t cbf,

        void* user,

        int notificationFrames,

        const sp<IMemory>& sharedBuffer,

        bool threadCanCallJava)

{

 

   ...前面一堆的判断,等以后讲AudioSystem再说

audio_io_handle_t output =

AudioSystem::getOutput((AudioSystem::stream_type)streamType,

            sampleRate, format, channels, (AudioSystem::output_flags)flags);

   //createTrack?看来这是真正干活的

    status_t status = createTrack(streamType, sampleRate, format, channelCount,

                                  frameCount, flags, sharedBuffer, output);

  //cbf是JNI传入的回调函数audioCallback

     if (cbf != 0) { //看来,怎么着也要创建这个线程了!

        mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);

       }

   return NO_ERROR;

}

 

看看真正干活的createTrack

技术分享
status_t AudioTrack::createTrack(

        int streamType,

        uint32_t sampleRate,

        int format,

        int channelCount,

        int frameCount,

        uint32_t flags,

        const sp<IMemory>& sharedBuffer,

        audio_io_handle_t output)

{

status_t status;

//啊,看来和audioFlinger挂上关系了呀。

    const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();

  

  //下面这个调用最终会在AudioFlinger中出现。暂时不管它。

    sp<IAudioTrack> track = audioFlinger->createTrack(getpid(),

                                                      streamType,

                                                      sampleRate,

                                                      format,

                                                      channelCount,

                                                      frameCount,

                                                      ((uint16_t)flags) << 16,

                                                      sharedBuffer,

                                                      output,

                                                      &status);

 

   //看见没,从track也就是AudioFlinger那边得到一个IMemory接口

//这个看来就是最终write写入的地方

    sp<IMemory> cblk = track->getCblk();

    mAudioTrack.clear();

    mAudioTrack = track;

    mCblkMemory.clear();//sp<XXX>的clear,就看着做是delete XXX吧

    mCblkMemory = cblk;

    mCblk = static_cast<audio_track_cblk_t*>(cblk->pointer());

    mCblk->out = 1;

   

    mFrameCount = mCblk->frameCount;

if (sharedBuffer == 0) {

//终于看到buffer相关的了。注意我们这里的情况

//STREAM模式没有传入共享buffer,但是数据确实又需要buffer承载。

//反正AudioTrack是没有创建buffer,那只能是刚才从AudioFlinger中得到

//的buffer了。

        mCblk->buffers = (char*)mCblk + sizeof(audio_track_cblk_t);

    }

    return NO_ERROR;

}
View Code

 

 

还记得我们说MemoryXXX没有同步机制,所以这里应该有一个东西能体现同步的,

那么我告诉大家,就在audio_track_cblk_t结构中。它的头文件在

framework/base/include/private/media/AudioTrackShared.h

实现文件就在AudioTrack.cpp中

audio_track_cblk_t::audio_track_cblk_t()

//看见下面的SHARED没?都是表示跨进程共享的意思。这个我就不跟进去说了

//等以后介绍同步方面的知识时,再细说

    : lock(Mutex::SHARED), cv(Condition::SHARED), user(0), server(0),

    userBase(0), serverBase(0), buffers(0), frameCount(0),

    loopStart(UINT_MAX), loopEnd(UINT_MAX), loopCount(0), volumeLR(0),

    flowControlFlag(1), forceReady(0)

{

}

 

到这里,大家应该都有个大概的全景了。

l         AudioTrack得到AudioFlinger中的一个IAudioTrack对象,这里边有一个很重要的数据结构audio_track_cblk_t,它包括一块缓冲区地址,包括一些进程间同步的内容,可能还有数据位置等内容

l         AudioTrack启动了一个线程,叫AudioTrackThread,这个线程干嘛的呢?还不知道

l         AudioTrack调用write函数,肯定是把数据写到那块共享缓冲了,然后IAudioTrack在另外一个进程AudioFlinger中(其实AudioFlinger是一个服务,在mediaservice中运行)接收数据,并最终写到音频设备中。

那我们先看看AudioTrackThread干什么了。

调用的语句是:

mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);

 

AudioTrackThread从Thread中派生,这个内容在深入浅出Binder机制讲过了。

反正最终会调用AudioTrackAThread的threadLoop函数。

先看看构造函数

AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver, bool bCanCallJava)

    : Thread(bCanCallJava), mReceiver(receiver)

{  //mReceiver就是AudioTrack对象

  // bCanCallJava为TRUE

}

 

这个线程的启动由AudioTrack的start函数触发。

技术分享
 1 void AudioTrack::start()
 2 
 3 {
 4 
 5   //start函数调用AudioTrackThread函数触发产生一个新的线程,执行mAudioTrackThread的
 6 
 7 threadLoop
 8 
 9     sp<AudioTrackThread> t = mAudioTrackThread;
10 
11 t->run("AudioTrackThread", THREAD_PRIORITY_AUDIO_CLIENT);
12 
13 //让AudioFlinger中的track也start
14 
15     status_t status = mAudioTrack->start();
16 
17 }
18 
19 bool AudioTrack::AudioTrackThread::threadLoop()
20 
21 {
22 
23   //太恶心了,又调用AudioTrack的processAudioBuffer函数
24 
25 return mReceiver.processAudioBuffer(this);
26 
27 }
28 
29 bool AudioTrack::processAudioBuffer(const sp<AudioTrackThread>& thread)
30 
31 {
32 
33 Buffer audioBuffer;
34 
35     uint32_t frames;
36 
37     size_t writtenSize;
38 
39       ...回调1
40 
41          mCbf(EVENT_UNDERRUN, mUserData, 0);
42 
43 ...回调2 都是传递一些信息到JNI里边
44 
45          mCbf(EVENT_BUFFER_END, mUserData, 0);
46 
47          // Manage loop end callback
48 
49     while (mLoopCount > mCblk->loopCount) {
50 
51         mCbf(EVENT_LOOP_END, mUserData, (void *)&loopCount);
52 
53     }
54 
55   //下面好像有写数据的东西
56 
57       do {
58 
59        audioBuffer.frameCount = frames;
60 
61 //获得buffer,
62 
63        status_t err = obtainBuffer(&audioBuffer, 1);
64 
65         size_t reqSize = audioBuffer.size;
66 
67 //把buffer回调到JNI那去,这是单独一个线程,而我们还有上层用户在那不停
68 
69 //地write呢,怎么会这样?
70 
71         mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer);
72 
73          audioBuffer.size = writtenSize;
74 
75          frames -= audioBuffer.frameCount;
76 
77        releaseBuffer(&audioBuffer); //释放buffer,和obtain相对应,看来是LOCK和UNLOCK操作了
78 
79     }
80 
81     while (frames);
82 
83    return true;
84 
85 }


难道真的有两处在write数据?看来必须得到mCbf去看看了,传的是EVENT_MORE_DATA标志。

mCbf由set的时候传入C++的Audi
View Code

 

oTrack,实际函数是:
static void audioCallback(int event, void* user, void *info) {

    if (event == AudioTrack::EVENT_MORE_DATA) {

         //哈哈,太好了,这个函数没往里边写数据

        AudioTrack::Buffer* pBuff = (AudioTrack::Buffer*)info;

        pBuff->size = 0; 

     }

 

从代码上看,本来google考虑是异步的回调方式来写数据,可惜发现这种方式会比较复杂,尤其是对用户开放的JAVA AudioTrack会很不好处理,所以嘛,偷偷摸摸得给绕过去了。

太好了,看来就只有用户的write会真正的写数据了,这个AudioTrackThread除了通知一下,也没什么实际有意义的操作了。

让我们看看write吧。

 4.2 write

ssize_t AudioTrack::write(const void* buffer, size_t userSize)

{

  够简单,就是obtainBuffer,memcpy数据,然后releasBuffer

眯着眼睛都能想到,obtainBuffer一定是Lock住内存了,releaseBuffer一定是unlock内存了

 1
     do {
 2 
 3         audioBuffer.frameCount = userSize/frameSize();
 4 
 5         status_t err = obtainBuffer(&audioBuffer, -1);
 6 
 7          size_t toWrite;
 8 
 9          toWrite = audioBuffer.size;
10 
11          memcpy(audioBuffer.i8, src, toWrite);
12 
13          src += toWrite;
14 
15         }
16 
17         userSize -= toWrite;
18 
19         written += toWrite;
20 
21         releaseBuffer(&audioBuffer);
22 
23     } while (userSize);
24 
25  
26 
27     return written;
28 
29 }
30 
31 obtainBuffer太复杂了,不过大家知道其大概工作方式就可以了
32 
33 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount)
34 
35 {
36 
37    //恕我中间省略太多,大部分都是和当前数据位置相关,
38 
39  uint32_t framesAvail = cblk->framesAvailable();
40 
41      cblk->lock.lock();//看见没,lock了
42 
43      result = cblk->cv.waitRelative(cblk->lock, milliseconds(waitTimeMs));
44 
45 //我发现很多地方都要判断远端的AudioFlinger的状态,比如是否退出了之类的,难道
46 
47 //没有一个好的方法来集中处理这种事情吗?
 
      if (result == DEAD_OBJECT) {
 
         result = createTrack(mStreamType, cblk->sampleRate, mFormat, mChannelCount,
 
           mFrameCount, mFlags, mSharedBuffer,getOutput());
 
         }
 
 //得到buffer
 
     audioBuffer->raw = (int8_t *)cblk->buffer(u);
 
   return active ? status_t(NO_ERROR) : status_t(STOPPED);
 
 }

 

 

再看看releaseBuffer

void AudioTrack::releaseBuffer(Buffer* audioBuffer){
audio_track_cblk_t
* cblk = mCblk; cblk->stepUser(audioBuffer->frameCount); } uint32_t audio_track_cblk_t::stepUser(uint32_t frameCount){ uint32_t u = this->user; u += frameCount; if (out) { if (bufferTimeoutMs == MAX_STARTUP_TIMEOUT_MS-1) { bufferTimeoutMs = MAX_RUN_TIMEOUT_MS; } } else if (u > this->server) { u = this->server; } if (u >= userBase + this->frameCount) {
userBase
+= this->frameCount; } this->user = u; flowControlFlag = 0; return u; }

 

奇怪了,releaseBuffer没有unlock操作啊?难道我失误了?

再去看看obtainBuffer?为何写得这么晦涩难懂?

原来在obtainBuffer中会某一次进去lock,再某一次进去可能就是unlock了。没看到obtainBuffer中到处有lock,unlock,wait等同步操作吗。一定是这个道理。难怪写这么复杂。还使用了少用的goto语句。

唉,有必要这样吗!

五 AudioTrack总结

通过这一次的分析,我自己觉得有以下几个点:

l         AudioTrack的工作原理,尤其是数据的传递这一块,做了比较细致的分析,包括共享内存,跨进程的同步等,也能解释不少疑惑了。

l         看起来,最重要的工作是在AudioFlinger中做的。通过AudioTrack的介绍,我们给后续深入分析AudioFlinger提供了一个切入点

 工作原理和流程嘛,再说一次好了,JAVA层就看最前面那个例子吧,实在没什么说的。

l         AudioTrack被new出来,然后set了一堆信息,同时会通过Binder机制调用另外一端的AudioFlinger,得到IAudioTrack对象,通过它和AudioFlinger交互。

l         调用start函数后,会启动一个线程专门做回调处理,代码里边也会有那种数据拷贝的回调,但是JNI层的回调函数实际并没有往里边写数据,大家只要看write就可以了

l         用户一次次得write,那AudioTrack无非就是把数据memcpy到共享buffer中咯

l         可想而知,AudioFlinger那一定有一个线程在memcpy数据到音频设备中去。我们拭目以待。

Android深入浅出之 AudioTrack分析

标签:

原文地址:http://www.cnblogs.com/Sharley/p/5748689.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!