码迷,mamicode.com
首页 > 编程语言 > 详细

机器学习【1】(Python Machine Learning读书笔记)

时间:2016-08-11 13:03:39      阅读:203      评论:0      收藏:0      [点我收藏+]

标签:

    依旧是作为读书笔记发布,不涉及太多代码和工具,作为了解性文章来介绍机器学习。

    文章主要分为两个部分,machine learning的概述和 scikit-learn的简单介绍,两部分关系紧密,合并书写,以致整体篇幅较长,分为1、2两篇。

    首先,是关于机器学习。要点如下:

1.1 机器学习三种主要方式

1.2 四大过程

1.3 python相关实现(安装包)

【1.1】

   机器学习方式主要有三大类:supervised learning(监督式学习), unsupervised learning(非监督式学习), and reinforcement learning(增强学习) 

        技术分享

    supervised learning(监督式学习):

     监督式学习主要目的是为了从已有数据中预测未来以及分类。先看一下基本定义:

     利用一组已知类别的样本调整分类器参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。监督学习是从标记的训练数据来推断一个功能的机器学习任务。
     通俗的解释一下,监督学习就是对一组(或多组)已知数据,进行分析,得出该状况下的最优模型,然后用这个模型对未知结果的数据进行分析,进行预测和分类。这在我们平常的简单建模中应用广泛,且置信程度较高。因而,它的一大特点就是“有训练样本
    
     监督学习最常用的两种算法是:统计分类 Classification 和 回归分析Regression
     使用哪一种算法,需要根据数据特点进行选择。如果数据是离散的、非线性的,用统计分类的方法;而数据是线性的,则选择回归分析。下面两张图形象说明了两者的区别:
技术分享
                          图1   统计分类
  技术分享                                                              
                            图2 回归分析
    
    reinforcement learning(增强学习)
    增强学习的目的是为了在相应环境下,使得决策最优。从根本上说,增强学习也拥有一个结果,我们称之为“回报信号”,它可以被描述成“回报函数”,这与监督式学习有类似之处。因而,先将这个概念提前描述。
    与监督式学习不同的是,增强学习的回报函数不仅仅是一个函数值或分类标签,它是用来衡量某一步骤(或行为)的优劣,带来的结果是否优良。因而,增强学习就是在交互中,谋求决策最优。它与环境密切相关。
      技术分享
      最典型的例子就是象棋程序。程序对每一步进行评估,得到相应的回报函数,我们只需要找到一条回报值最大的路径(每步的回报之和最大),就认为是最佳的路径。
 
    unsupervised learning非监督式学习
    先看特点:dealing with unlabeled data or data of unknown structure 也就是之前提到的,非监督式和监督式最大的区别就是样本是否可训练。
    两大算法分别是:聚类和降维,从字面就极好理解,聚类是将相似度高的物体汇聚成同一类。数据没有经过训练,直接进行分析。降维,就是将数据维度降低。下面两张图,可以很好的表现出来:
     技术分享
                                     图3  聚类      
  技术分享
                                图4 降维
 
【1.2】机器学习过程
  技术分享
      主要分为四大部分:
  (1)Preprocessing – getting data into shape
     预处理是机器学习关键的一步,也是任何数据分析中最基础的一步。现实生活中的数据总是不能完全符合我们的格式,我们无法避免地需要对数据进行处理,使之成为我们需要的格式。具体方式不细说,可参考前面的几篇文章,有提到一些,也可以在实际用到时,系统学习
  (2)Training and selecting a predictive model
     简单来说就一句话,选择一个合适的模型。
  (3)Evaluating models 
     通俗概况,误差分析及检验
  (4)predicting unseen data instances
    如果模型理想,即可应用
 
   【1.3】Installing Python packages
    •NumPy 1.9.1
    •SciPy 0.14.0
    •scikit-learn 0.15.2
    •matplotlib 1.4.0
    •pandas 0.15.2

机器学习【1】(Python Machine Learning读书笔记)

标签:

原文地址:http://www.cnblogs.com/biyoner/p/5760429.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!