标签:
色彩增强不同于彩色图像增强,图像增强的一般处理方式为直方图均衡化等,目的是为了增强图像局部以及整体对比度。而色彩增强的目的是为了使的原有的不饱和的色彩信息变得饱和、丰富起来。对应于Photoshop里面的“色相/饱和度”调节选项里面对饱和度的操作。色彩增强的过程,并不改变原有彩色图像的颜色以及亮度信息。
在我的色彩增强算法模块里面,始终只针对色彩饱和度(Saturation)信息做研究,调整。这样的话,那就不得不介绍HSV颜色空间了,H代表Hue(色彩),S代表Saturation(饱和度),V代表Value,也可用B表示(Brightness,明度),HSV空间也可称作HSB空间。
HSV空间在wikipedia上的介绍,https://en.wikipedia.org/wiki/HSL_and_HSV
下面根据自己的理解介绍一下HSV空间,以及其各通道在Matlab和OpenCV中的不同。
HSV的圆柱模型
HSV的圆锥模型
从上图可以看出,在HSV空间中,Hue通道的取值从0-360°变化时,颜色从红->黄->绿->青->蓝逐步变化。Saturation从0->1变化时,色彩逐渐加深变成纯色(pure)。Value值从0->1变化时,图像整体亮度增加,V值为0时,图像为全黑,V值为1时,图像为全白。
Matlab RGB色彩空间向HSV转换,采用函数rgb2hsv,转换后的hsv各通道的元素取值范围为[0,1];OpenCV中彩色图像向HSV空间中转换,cvtColor(src,srcHsv,CV_BGR2HSV),转换后H的取值范围为[0,180],S,V的取值范围为[0,255].
下面介绍自己的算法处理思路,后面会给出完整的Matlab代码:
步骤一、给出一张原图src,用PS进行饱和度(Saturation)+40处理后另存为src_40;
步骤二、将以上两张图像分别转换到hsv空间,提取出饱和度信息,分别为S,S_40;
步骤三、统计饱和度增加40后,原色彩饱和度与饱和度增量之间的对应关系,即S -- (S_40-S);
步骤四、对关系S -- (S_40-S)进行二次多项式曲线拟合,得到二次曲线f(x) = p1*x^2 + p2*x + p3;
为什么是二次?1.对应关系呈现出抛物线形状;2.更高次曲线并没有明显改善拟合性能,且计算消耗会变高。
步骤五、任意给定输出图像input,根据其色彩饱和度信息,即可进行色彩增强40处理,新的饱和度信息可以表示为S‘(x) = S(x) + f(x),得到增强后的色彩信息后返回RGB图像输出;
步骤六、分别对原图+20,+40,+60后进行饱和度信息统计,并得到相应拟合参数,设置为色彩增强的低、中、高三挡,在实际处理过程中,根据输入图像input自身色彩饱和度信息(均值)自适应选取相应参数进行色彩增强;
步骤七、按需对某一单独颜色通道进行色彩增强处理,例如绿色范围为105°-135°,在对该范围进行增强的同时,还需对75°-105°,135°-165°进行一半强度的增强,这样才会保证色彩的连续性,不会出现色斑;
步骤八、按需对色彩(Hue)进行转换;
代码部分:第一部分用作估计拟合参数,在Curve fitting tool里面对X,Y进行拟合,得到曲线参数。
% Color Enhancement clc,clear,close all src1 = imread(‘src.bmp‘); src2 = imread(‘src_40.bmp‘); src1_hsv = rgb2hsv(src1); src2_hsv = rgb2hsv(src2); h1 = src1_hsv(:,:,1); s1 = src1_hsv(:,:,2); v1 = src1_hsv(:,:,3); h2 = src2_hsv(:,:,1); s2 = src2_hsv(:,:,2); v2 = src2_hsv(:,:,3); % meanS1 = mean(s1(:)); varS1 = std2(s1); % meanS2 = mean(s2(:)); varS2 = std2(s2); % deltaS = s2 - s1; deltaV = v2 - v1; %% test1 : 观测“原饱和度-饱和度调整增量”的关系 saturation and delta saturation figure; oriS = zeros(101,2); s3 = s1; j = 1; for i = 0: 0.01 : 1 oriS(j,1) = i + 0.01; oriS(j,2) = mean(deltaS(find(s1 > i & s1< i + 0.01))); j = j + 1; end X = oriS(:,1); Y = oriS(:,2); XX = oriS(:,1) * 255; YY = oriS(:,2) * 255; plot(XX,YY)
第二部分,对输入图像进行高、中、低三级自适应增强处理
%% Color Enhancement Module -- Authored by HuangDao,08/17/2015 % functions: input a image of type BMP or PNG, the program will decide to % do the Color Enhancement choice for you.There are four types of Enhanced % intensity - 20,40,60,80.The larger number stands for stronger % enhancement. % And we can also choose the simple color channel(eg.R,G,B) to do the % enhancement.There are also four different types of enhanced intensity. % % parameters table % ------------------------------------------------------------------------ % | Enhanced | MATLAB params | OpenCV params | % | intensity |p1 p2 p3 | p1 p2 p3 | % | 20 |-0.1661 0.2639 -0.003626 |-0.0006512 0.2639 -0.9246| % | 40 |-0.4025 0.6238 -0.0005937 |0.001578 0.6238 -0.1514| % | 60 |1.332 1.473 -0.01155 |-0.005222 1.473 -2.946 | % | 80 |-4.813 3.459 -0.004568 |-0.01887 3.459 -1.165 | % ------------------------------------------------------------------------ clc; clear ;close all % 载入文件夹 pathName = ‘.\‘; fileType = ‘*.bmp‘; files = dir([pathName fileType]); len = length(files); for pic = 5%1:1:len srcName = files(pic).name; srcImg = imread(srcName); srcHSV = rgb2hsv(srcImg); srcH = srcHSV(:,:,1); srcS = srcHSV(:,:,2); srcV = srcHSV(:,:,3); meanS = mean(srcS(:)); varS = std2(srcS); %图像整体进行色彩增强处理 if (meanS >= 0.5) p1 = 0;p2 = 0;p3 = 0; else if (meanS >= 0.35 && meanS < 0.5) p1 = -0.1661;p2 = 0.2639;p3 = -0.003626; else if (meanS >=0.2 && meanS <0.35) p1 = -0.4025;p2 = 0.6238;p3 = -0.0005937; else p1 = 1.332;p2 = 1.473;p3 = -0.01155; end end end dstS = srcS + p1*srcS.*srcS + p2*srcS + p3 ; dstHSV = srcHSV; dstHSV(:,:,2) = dstS; dstImg = hsv2rgb(dstHSV); figure;imshow(srcImg); figure;imshow(dstImg); %指定R,G,B通道进行色彩增强处理,红色范围([225-255]),绿色范围(75-[105-135]-165),蓝色范围([-15-15]) p11 = -0.4025;p21 = 0.6238;p31 = -0.0005937;%周边杂色调整系数,40 p12 = 1.332; p22 = 1.473; p32 = -0.01155; %纯色区域调整系数,60 compHue = srcH; GcompS = dstS; RcompS = dstS; BcompS = dstS; channel = ‘B‘; switch channel case ‘G‘ I1 = find(compHue > 0.2083 & compHue <0.2917); GcompS(I1) = dstS(I1) + dstS(I1).*dstS(I1)*p11 + dstS(I1)*p21 + p31; I2 = find(compHue >= 0.2917 & compHue <= 0.3750); GcompS(I2) = dstS(I2) + dstS(I2).*dstS(I2)*p12 + dstS(I2)*p22 + p32; I3 = find(compHue > 0.3750 & compHue <0.4583); GcompS(I3) = dstS(I3) + dstS(I3).*dstS(I3)*p11 + dstS(I3)*p21 + p31; compHSV = dstHSV; compHSV(:,:,2) = GcompS; dstImgG = hsv2rgb(compHSV); figure;imshow(dstImgG); case ‘R‘ I1 = find(compHue > 0.875 & compHue <0.9583); RcompS(I1) = dstS(I1) + dstS(I1).*dstS(I1)*p11 + dstS(I1)*p21 + p31; I2 = find(compHue >= 0.9583 | compHue <= 0.0417); RcompS(I2) = dstS(I2) + dstS(I2).*dstS(I2)*p12 + dstS(I2)*p22 + p32; I3 = find(compHue > 0.0417 & compHue <0.125); RcompS(I3) = dstS(I3) + dstS(I3).*dstS(I3)*p11 + dstS(I3)*p21 + p31; compHSV = dstHSV; compHSV(:,:,2) = RcompS; dstImgR = hsv2rgb(compHSV); figure;imshow(dstImgR); case ‘B‘ I1 = find(compHue > 0.5417 & compHue <0.625); BcompS(I1) = dstS(I1) + dstS(I1).*dstS(I1)*p11 + dstS(I1)*p21 + p31; I2 = find(compHue >= 0.625 & compHue <= 0.7083); BcompS(I2) = dstS(I2) + dstS(I2).*dstS(I2)*p12 + dstS(I2)*p22 + p32; I3 = find(compHue > 0.7083 & compHue <0.7917); BcompS(I3) = dstS(I3) + dstS(I3).*dstS(I3)*p11 + dstS(I3)*p21 + p31; compHSV = dstHSV; compHSV(:,:,2) = BcompS; dstImgB = hsv2rgb(compHSV); figure;imshow(dstImgB); end %进行R,G,B通道之间的互换 convH = zeros(size(srcH,1),size(srcH,2)); %convert deltaHue = 240; switch deltaHue case 120 disp(‘R -> G‘) convH = srcH + 1/3; convH(find(convH >= 1)) = convH(find(convH >= 1)) - 1; case 240 disp(‘R -> B‘) convH = srcH + 2/3; convH(find(convH >= 1)) = convH(find(convH >= 1)) - 1; end convHSV = dstHSV; convHSV(:,:,1) = convH; convImg = hsv2rgb(convHSV); figure;imshow(convImg) pause(); end
添加OpenCV代码段:
Mat srcHSV,sat,satAdj,dstMerge,dst; //sat - saturation饱和度分量 Mat imageAwb = imread("m_ImageAwb.bmp"); vector<Mat> channels,channels1; double p1,p2,p3; cvtColor(imageAwb,srcHSV,CV_BGR2HSV); split(srcHSV,channels); split(srcHSV,channels1); sat = channels.at(1); Scalar m = mean(sat); if (m(0) <= 51.5) {p1 = -0.002714 , p2 = 0.9498, p3 = -0.5073; AfxMessageBox("High Color Enhancement!"); }//高 else if (m(0) > 38.5 && m(0) <= 89.5) {p1 = -0.001578 , p2 = 0.6238, p3 = -0.1514;AfxMessageBox("Middle Color Enhancement!"); }//中 else if (m(0) > 89.5 && m(0) <=127.5) {p1 = -0.0006512, p2 = 0.2639, p3 = -0.9246;AfxMessageBox("Low Color Enhancement!");}//低 else {p1 = 0,p2 = 0,p3 =0;AfxMessageBox("No Color Enhancement!");} satAdj = sat; for (int i = 0 ; i < sat.rows;i ++) { for (int j = 0;j < sat.cols;j ++) { uchar val = sat.at<uchar>(i,j); satAdj.at<uchar>(i,j) = (val + p1 * val * val + p2 * val + p3) ; } } channels1.at(1) = satAdj; merge(channels1,dstMerge); cvtColor(dstMerge,dst,CV_HSV2BGR); imwrite("m_ImageCE.bmp",dst);
最后给出算法效果图:
Group1.原图->增强后
Group2.原图->R通道增强->颜色通道改变R2B
Group3.原图->增强后->颜色通道改变R2B
完!下篇讲Local Tone Mapping。
ISP模块之色彩增强算法--HSV空间Saturation通道调整 .
标签:
原文地址:http://www.cnblogs.com/whw19818/p/5765999.html