标签:
# -*- coding: utf-8 -*- # --------------------------------------------------------------------------- # AdaBoost.py # Created on: 2014-06-12 09:49:56.00000 # Description: # --------------------------------------------------------------------------- import sys import math import numpy as np breakValues = (2.5, 5.5, 8.5) X = np.array([0,1,2,3,4,5,6,7,8,9]) Y = np.array([1,1,1,-1,-1,-1,1,1,1,-1]) W1 = np.array([0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]) def Classifier25(x): if x <= 2.5: return 1 else: return -1 def Classifier55(x): if x >= 5.5: return 1 else: return -1 def Classifier85(x): if x <= 8.5: return 1 else: return -1 def ClassifyArray(XArray, Classifier): YY = [] for x in XArray: YY.append(Classifier(x)) print(YY) return YY def ErrorSum(YY): i = 0 errorValue = 0; for y in YY: if y != Y[i]: errorValue += W1[i] i = i+1 return errorValue def ErrorAllSum(ExpressArray): i = 0 errorValue = 0; for x in X: value = 0 for express in ExpressArray: value += express[0] * express[1](x) if value > 0: value = 1 else: value = -1 if value != Y[i]: errorValue += 0.1 i = i+1 return errorValue def SelectClassifierFunction(XArray): ClassifierArray = [Classifier25, Classifier55, Classifier85] errArray = [] value = float(‘NaN‘) errMin = float(‘Inf‘) for classifier in ClassifierArray: #计算分类的结果值 YY = ClassifyArray(XArray, classifier) #计算分类的错误率 errorValue = ErrorSum(YY) errArray.append(errorValue) if errorValue < errMin: errMin = errorValue value = classifier print(errArray) print(value.__name__) return value print(W1) ‘‘‘ print(‘--------------------------------‘) classifier = SelectClassifierFunction(X) #计算分类的结果值 G = ClassifyArray(X, classifier) #计算分类的错误率 e = ErrorSum(G) a = 0.5 * math.log((1-e)/e) a = round(a, 4) print(a) W2 = W1*np.exp(-a*Y*np.array(G)) Zm = np.sum(W2) #Zm = round(Zm, 4) print(Zm) W1 = W2 / Zm print(W1) print(‘--------------------------------‘) W1 = np.array([0.0715,0.0715,0.0715,0.0715,0.0715,0.0715,0.1666,0.1666,0.1666,0.07151]) classifier = SelectClassifierFunction(X) #计算分类的结果值 G = ClassifyArray(X, classifier) #计算分类的错误率 e = ErrorSum(G) a = 0.5 * math.log((1-e)/e) a = round(a, 4) print(a) W2 = W1*np.exp(-a*Y*np.array(G)) Zm = np.sum(W2) #Zm = round(Zm, 4) print(Zm) W1 = W2 / Zm print(W1) print(‘--------------------------------‘) W1 = np.array([0.0455, 0.0455, 0.0455, 0.1667, 0.1667, 0.01667, 0.1060, 0.1060, 0.1060, 0.0455]) classifier = SelectClassifierFunction(X) #计算分类的结果值 G = ClassifyArray(X, classifier) #计算分类的错误率 e = ErrorSum(G) a = 0.5 * math.log((1-e)/e) a = round(a, 4) print(a) W2 = W1*np.exp(-a*Y*np.array(G)) Zm = np.sum(W2) #Zm = round(Zm, 4) print(Zm) W1 = W2 / Zm print(W1) ‘‘‘ errorAll = 100 ExpressArray = [] while errorAll > 0.1: print(‘--------------------------------‘) classifier = SelectClassifierFunction(X) #计算分类的结果值 G = ClassifyArray(X, classifier) #计算分类的错误率 e = ErrorSum(G) a = 0.5 * math.log((1-e)/e) a = round(a, 4) print(‘a:‘ + str(a)) W2 = W1*np.exp(-a*Y*np.array(G)) Zm = np.sum(W2) #Zm = round(Zm, 4) print(Zm) print(‘Zm:‘ + str(Zm)) W1 = W2 / Zm print(‘W1:‘ + str(W1)) ExpressArray.append([a,classifier]) errorAll = ErrorAllSum(ExpressArray) print(‘errorAll:‘ + str(errorAll)) expressString = ‘G(x) = sign( ‘ i = 0 for express in ExpressArray: if i > 0: expressString += ‘ + ‘ expressString += str(express[0]) + ‘ * ‘ + express[1].__name__+‘(x)‘ i += 1 expressString += ‘ )‘ print(‘--------------------------------‘) print(‘分类函数为:\n‘ + expressString) print(‘--------------------------------‘)
标签:
原文地址:http://www.cnblogs.com/gispathfinder/p/5783406.html