码迷,mamicode.com
首页 > 编程语言 > 详细

学习python:day4

时间:2016-08-19 09:51:19      阅读:191      评论:0      收藏:0      [点我收藏+]

标签:

1.装饰器

定义:本质是函数,(装饰其他函数)就是为其他函数添加附加功能
原则:1.不能修改被装饰的函数的源代码
2.不能修改被装饰的函数的调用方式
实现装饰器知识储备:
1,函数即变量
2,高阶函数:a.吧一个函数名当做实参传给另一个函数
b.返回值中包含函数名
import time
def timer(func):
def deco(*args,**kwargs):
star_time = time.time()
func(*args,**kwargs)
stop_time = time.time()
print("the func run time is %s" %(stop_time-star_time))
return deco
@timer
def test1():
time.sleep(3)
print("in the test1")
@timer
def test2(name,age):
print("test2:","alex",33)

test1()
test2()


2.迭代器&生成器

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

1
2
3
4
5
6
>>> L = [x * for in range(10)]
>>> L
[0149162536496481]
>>> g = (x * for in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

 

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1in <module>
StopIteration

使用for循环

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> g = (x * for in range(10))
>>> for in g:
...     print(n)
...
0
1
4
9
16
25
36
49
64
81

 斐波拉契数列

def fib(max):
    n, a, b = 001
    while n < max:
        print(b)
        a, b = b, a + b
        = + 1
    return ‘done‘

注意,赋值语句:

1
a, b = b, a + b

相当于:

1
2
3
= (b, a + b) # t是一个tuple
= t[0]
= t[1]
1
2
3
4
5
6
7
8
9
10
11
12
>>> fib(10)
1
1
2
3
5
8
13
21
34
55
done

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
n,a,b = 0,0,1

while n < max:
#print(b)
yield b
a,b = b,a+b

n += 1

return ‘done‘

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

 

2
3
4
5
6
7
8
9
10
11
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance(‘abc‘, Iterable)
True
>>> isinstance((x for in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

1
2
3
4
5
6
7
8
9
>>> from collections import Iterator
>>> isinstance((x for in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance(‘abc‘, Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

1
2
3
4
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter(‘abc‘), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

1
2
for in [12345]:
    pass

实际上完全等价于:

技术分享
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

协程

import time
def consumer(name):
print("%s 准备吃包子了!" %name)
while True:
baozi = yield
print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
c = consumer("zhangsan")
c.__next__()



def producter(name):
c = consumer("A")
c1 = consumer("B")
c.__next__()
c1.__next__()
print("老子开始准备做包子了")
for i in range(10):
time.sleep(1)
print("做一个包子,分两半!")
c.send(i)
c1.send(i)

producter("lisi")

列表生成式

b = [i*2 for i in range(10)]
print(b)

a = (i*2 for i in range(10))
for i in a:
print(i)


def fib(max):
n,a,b = 0,0,1
while n < max:
yield b
a, b=b ,a+b
n = n+1
return ‘---done---‘
g = fib(6)
while True:
try:
x = next(g)
print("g:",x)
except StopIteration as e:
print(‘Generator return value‘ , e.value)
break

3.json

 

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

Json模块提供了四个功能:dumps、dump、loads、load

pickle模块提供了四个功能:dumps、dump、loads、load

序列化

import pickle
def sayhi(name):
print("hello,",name)
info = {
‘name‘:‘alex‘,
‘age‘:22,
‘func‘:sayhi
}

f = open("test.text","wb")
#print(json.dumps(info))
print( )
f.write( pickle.dumps( info) )
f.close()
‘‘‘
pickle.dump(info,f)
info[‘age‘] = 21
f.write( json.dumps( info) )
‘‘‘

反序列化

import pickle
def sayhi(name):
print("hello2,",name)
f = open("test.text","rb")
data = pickle.loads(f.read())
print(data["func"]("Alex"))
‘‘‘
data = pickle.load(f) #data = pickle.loads(f.read())
print(data["func"]("Alex"))
for line in f:
print(json.loads(line))
‘‘‘

学习python:day4

标签:

原文地址:http://www.cnblogs.com/liuyuchen123456/p/5786186.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!