标签:
总结一下这两天学习的Android注入so文件,通过遍历got表hook函数调用
1.注入so文件
2.so文件中遍历got表hook函数
一.注入so文件
分为以下几个步骤
1.每个进程都在/proc目录下,以进程id为文件夹名,所以可以通过/proc/id/cmdline文件中中读取进程名称,和我们需要注入的进程名称比较,获得进程id
2.以root身份运行注入程序,通过ptrace函数,传入PTRACE_ATIACH附加到目标进程,PTRACE_SETREGS设置进程寄存器,PTRACE_GETREGS获得目标寄存器.更多可以访问ptrace的使用
3.调用mmap在对方进程空间分配内存,保存要加载的so文件路径,so中函数的名称,so中函数需要传入的参数。
由于每个模块在进程中加载地址不一致,所以我们首先获得目标进程中libc.so文件基址TargetBase,再获得自身libc.so基址SelfBase,再根据mmap-SelfBase+TargetBase获得目标进程中mmap的地址。
同理获得目标进程中dlopen()函数地址、dlsym()函数地址、dlclose()函数地址
4.调用dlopen()函数加载so库,调用dlsym()函数获得so库中函数的地址,调用so库中函数的地址,测试注入成功!调用dlclose()函数卸载so库。
首先创建目录和文件:
jni
inject.c
Android.mk
Application.mk
#include <stdio.h> #include <stdlib.h> #include <asm/ptrace.h> #include <asm/user.h> #include <asm/ptrace.h> #include <sys/wait.h> #include <sys/mman.h> #include <dlfcn.h> #include <dirent.h> #include <unistd.h> #include <string.h> #include <android/log.h> #include <elf.h> #define ENABLE_DEBUG 1 #define PTRACE_PEEKTEXT 1 #define PTRACE_POKETEXT 4 #define PTRACE_ATTACH 16 #define PTRACE_CONT 7 #define PTRACE_DETACH 17 #define PTRACE_SYSCALL 24 #define CPSR_T_MASK ( 1u << 5 ) #define MAX_PATH 0x100 #define REMOTE_ADDR( addr, local_base, remote_base ) ( (uint32_t)(addr) + (uint32_t)(remote_base) - (uint32_t)(local_base) ) const char *libc_path = "/system/lib/libc.so"; const char *linker_path = "/system/bin/linker"; #if defined(__i386__) #define pt_regs user_regs_struct #endif #if ENABLE_DEBUG #define LOG_TAG "INJECT" #define LOGD(fmt,args...) __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG,fmt,##args) #define DEBUG_PRINT(format,args...) LOGD(format, ##args) #else #define DEBUG_PRINT(format,args...) #endif int ptrace_readdata( pid_t pid, uint8_t *src, uint8_t *buf, size_t size ) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; char chars[sizeof(long)]; } d; j = size / 4; remain = size % 4; laddr = buf; for ( i = 0; i < j; i ++ ) { d.val = ptrace( PTRACE_PEEKTEXT, pid, src, 0 ); memcpy( laddr, d.chars, 4 ); src += 4; laddr += 4; } if ( remain > 0 ) { d.val = ptrace( PTRACE_PEEKTEXT, pid, src, 0 ); memcpy( laddr, d.chars, remain ); } return 0; } int ptrace_writedata( pid_t pid, uint8_t *dest, uint8_t *data, size_t size ) { uint32_t i, j, remain; uint8_t *laddr; union u { long val; char chars[sizeof(long)]; } d; j = size / 4; remain = size % 4; laddr = data; for ( i = 0; i < j; i ++ ) { memcpy( d.chars, laddr, 4 ); ptrace( PTRACE_POKETEXT, pid, dest, d.val ); dest += 4; laddr += 4; } if ( remain > 0 ) { d.val = ptrace( PTRACE_PEEKTEXT, pid, dest, 0 ); for ( i = 0; i < remain; i ++ ) { d.chars[i] = *laddr ++; } ptrace( PTRACE_POKETEXT, pid, dest, d.val ); } return 0; } int ptrace_writestring( pid_t pid, uint8_t *dest, char *str ) { return ptrace_writedata( pid, dest, str, strlen(str)+1 ); } //在目标进程中执行指定函数 #if defined(__arm__) int ptrace_call( pid_t pid, uint32_t addr, long *params, uint32_t num_params, struct pt_regs* regs ) { uint32_t i; for ( i = 0; i < num_params && i < 4; i ++ ) { regs->uregs[i] = params[i]; } // // push remained params onto stack // if ( i < num_params ) { //sp-4 , 参数入栈 regs->ARM_sp -= (num_params - i) * sizeof(long) ; ptrace_writedata( pid, (void *)regs->ARM_sp, (uint8_t *)¶ms[i], (num_params - i) * sizeof(long) ); } //pc寄存器指向要call的地址 regs->ARM_pc = addr; if ( regs->ARM_pc & 1 ) { /* thumb 判断最后一位,如果是1就是thumb指令集 0 arm指令集 */ regs->ARM_pc &= (~1u); regs->ARM_cpsr |= CPSR_T_MASK; } else { /* arm */ regs->ARM_cpsr &= ~CPSR_T_MASK; } regs->ARM_lr = 0; //目标进程执行完mmap之后暂停 if ( ptrace_setregs( pid, regs ) == -1 || ptrace_continue( pid ) == -1 ) { return -1; } //等待目标进程中mmap执行完成 waitpid( pid, NULL, WUNTRACED ); return 0; } #elif defined(__i386__) long ptrace_call(pid_t pid, uint32_t addr, long* params, uint32_t num_params, struct user_regs_struct* regs) { regs->esp -= (num_params)*sizeof(long); /*开辟堆栈空间 存储参数*/ ptrace_writedata(pid,(void*)regs->esp,(uint8_t*)params,(num_params)*sizeof(long)); long tmp_addr = 0x00; regs->esp -= sizeof(long); ptrace_writedata(pid,regs->esp,(char*)&tmp_addr,sizeof(tmp_addr)); regs->eip = addr; //修改指令指针寄存器,指向要运行的函数 if(ptrace_setregs(pid,regs)==-1 || ptrace_continue(pid) == -1) //恢复函数状态,函数入口处运行 { printf("error\n"); return -1; } int stat = 0; waitpid(pid,&stat,WUNTRACED); while(stat!= 0xb7f) { if(ptrace_continue(pid)==-1) { printf("error\n"); return -1; } waitpid(pid,&stat,WUNTRACED); } return 0; } #else #error "Not supported" #endif //获取目标进程寄存器 int ptrace_getregs( pid_t pid, struct pt_regs* regs ) { if ( ptrace( PTRACE_GETREGS, pid, NULL, regs ) < 0 ) { perror( "ptrace_getregs: Can not get register values" ); return -1; } return 0; } //设置目标进程寄存器 int ptrace_setregs( pid_t pid, struct pt_regs* regs ) { if ( ptrace( PTRACE_SETREGS, pid, NULL, regs ) < 0 ) { perror( "ptrace_setregs: Can not set register values" ); return -1; } return 0; } int ptrace_continue( pid_t pid ) { if ( ptrace( PTRACE_CONT, pid, NULL, 0 ) < 0 ) { perror( "ptrace_cont" ); return -1; } return 0; } //attach到目标进程ptrace_attach int ptrace_attach( pid_t pid ) { if ( ptrace( PTRACE_ATTACH, pid, NULL, 0 ) < 0 ) { perror( "ptrace_attach" ); return -1; } //暂停目标进程 waitpid( pid, NULL, WUNTRACED ); //DEBUG_PRINT("attached\n"); //做出系统调用或者准备退出的时候暂停 if ( ptrace( PTRACE_SYSCALL, pid, NULL, 0 ) < 0 ) { perror( "ptrace_syscall" ); return -1; } //子进程暂停之后立即返回 waitpid( pid, NULL, WUNTRACED ); return 0; } int ptrace_detach( pid_t pid ) { if ( ptrace( PTRACE_DETACH, pid, NULL, 0 ) < 0 ) { perror( "ptrace_detach" ); return -1; } return 0; } void* get_module_base( pid_t pid, const char* module_name ) { FILE *fp; long addr = 0; char *pch; char filename[32]; char line[1024]; if ( pid < 0 ) { /* self process */ snprintf( filename, sizeof(filename), "/proc/self/maps", pid ); } else { snprintf( filename, sizeof(filename), "/proc/%d/maps", pid ); } fp = fopen( filename, "r" ); if ( fp != NULL ) { while ( fgets( line, sizeof(line), fp ) ) { if ( strstr( line, module_name ) ) { pch = strtok( line, "-" ); addr = strtoul( pch, NULL, 16 ); if ( addr == 0x8000 ) addr = 0; break; } } fclose( fp ) ; } return (void *)addr; } //获取函数在目标进程中的地址 void* get_remote_addr( pid_t target_pid, const char* module_name, void* local_addr ) { void* local_handle, *remote_handle; //指定模块在我们自己进程中的基地址 local_handle = get_module_base( -1, module_name ); //指定模块在目标进程中的基地址 remote_handle = get_module_base( target_pid, module_name ); DEBUG_PRINT( "[+] get_remote_addr: local[%x], remote[%x]\n", local_handle, remote_handle ); //mmap函数在目标进程的绝对地址 void* ret_addr = (void *)( (uint32_t)local_addr + (uint32_t)remote_handle - (uint32_t)local_handle ); #if defined(__i386__) if(!strcmp(module_name,libc_path)){ ret_addr += 2; } #endif return ret_addr; } //读取/proc目录下以id为文件夹名的文件夹内cmdline的内容 int find_pid_of( const char *process_name ) { int id; pid_t pid = -1; DIR* dir; FILE *fp; char filename[32]; char cmdline[256]; struct dirent * entry; if ( process_name == NULL ) return -1; dir = opendir( "/proc" ); if ( dir == NULL ) return -1; while( (entry = readdir( dir )) != NULL ) { id = atoi( entry->d_name ); if ( id != 0 ) { sprintf( filename, "/proc/%d/cmdline", id ); fp = fopen( filename, "r" ); if ( fp ) { fgets( cmdline, sizeof(cmdline), fp ); fclose( fp ); if ( strcmp( process_name, cmdline ) == 0 ) { /* process found */ pid = id; break; } } } } closedir( dir ); return pid; } long ptrace_retval(struct pt_regs* regs) { #if defined(__arm__) return regs->ARM_r0; #elif defined(__i386__) return regs->eax; #else #error "Not supported" #endif } long ptrace_ip(struct pt_regs* regs) { #if defined(__arm__) return regs->ARM_pc; #elif defined(__i386__) return regs->eip; #else #error "Not supported" #endif } int ptrace_call_wrapper(pid_t target_pid, const char* func_name, void* func_addr, long* parameters,int param_num,struct pt_regs* regs) { DEBUG_PRINT("[+]Calling%s in target process.\n",func_name); if(ptrace_call(target_pid,(uint32_t)func_addr,parameters,param_num,regs)==-1) //修改eip,运行函数 return -1; if(ptrace_getregs(target_pid,regs)==-1) return -1; DEBUG_PRINT("[+]Target process returned from%s,return value = %x,pc=%x\n",func_name,ptrace_retval(regs),ptrace_ip(regs)); return 0; } int inject_remote_process( pid_t target_pid, const char *library_path, const char *func_name, void *param, size_t param_size ) { int ret = -1; void *mmap_addr, *dlopen_addr, *dlsym_addr, *dlclose_addr,*dlerror_addr; void *local_handle, *remote_handle, *dlhandle; uint8_t *map_base; uint8_t *dlopen_param1_ptr, *dlsym_param2_ptr, *saved_r0_pc_ptr, *inject_param_ptr, *remote_code_ptr, *local_code_ptr; struct pt_regs regs, original_regs; extern uint32_t _dlopen_addr_s, _dlopen_param1_s, _dlopen_param2_s, _dlsym_addr_s, _dlsym_param2_s, _dlclose_addr_s, _inject_start_s, _inject_end_s, _inject_function_param_s, _saved_cpsr_s, _saved_r0_pc_s; uint32_t code_length; long parameters[10]; DEBUG_PRINT( "[+] Injecting process: %d\n", target_pid ); /*attach到指定进程*/ if ( ptrace_attach( target_pid ) == -1 ) return EXIT_SUCCESS; /*获得进程寄存器*/ if ( ptrace_getregs( target_pid, ®s ) == -1 ) goto exit; /*保存进程寄存器值*/ memcpy( &original_regs, ®s, sizeof(regs) ); /*通过自己进程中mmap函数相对与libc.so基址的偏移,在目标进程中通过libc.so基址获得mmap地址*/ mmap_addr = get_remote_addr( target_pid, "/system/lib/libc.so", (void *)mmap ); DEBUG_PRINT( "[+] Remote mmap address: %x\n", mmap_addr ); /* 调用mmap分配内存空间 */ parameters[0] = 0; // addr parameters[1] = 0x4000; // size parameters[2] = PROT_READ | PROT_WRITE | PROT_EXEC; // prot parameters[3] = MAP_ANONYMOUS | MAP_PRIVATE; // flags parameters[4] = 0; //fd parameters[5] = 0; //offset DEBUG_PRINT( "[+] Calling mmap in target process.\n" ); if(ptrace_call_wrapper(target_pid,"mmap",mmap_addr,parameters,6,®s)==-1) //调用mmap在目标进程中分配内存空间 goto exit; map_base = ptrace_retval(®s); //取回分配的地址 DEBUG_PRINT("mmap_base is %x",map_base); dlopen_addr = get_remote_addr( target_pid, linker_path, (void *)dlopen ); //获得目标进程中dlopen函数地址 dlsym_addr = get_remote_addr( target_pid, linker_path, (void *)dlsym ); //获得目标进程中dlsym函数地址 dlclose_addr = get_remote_addr( target_pid, linker_path, (void *)dlclose );//获得目标进程中dlclose函数地址 dlerror_addr = get_remote_addr(target_pid,linker_path,(void *)dlerror); //获得目标进程中dlerror函数地址 DEBUG_PRINT( "[+] Get imports: dlopen: %x, dlsym: %x, dlclose: %x,dlerror: %x\n", dlopen_addr, dlsym_addr, dlclose_addr, dlerror_addr); printf("library path = %s\n",library_path); ptrace_writedata(target_pid,map_base,library_path,strlen(library_path)+1); //在目标进程分配的空间中,写入要加载的动态库路径 parameters[0] = map_base; parameters[1] = RTLD_NOW|RTLD_GLOBAL; if(ptrace_call_wrapper(target_pid,"dlopen",dlopen_addr,parameters,2,®s)==-1) //调用dlopen函数,加载动态库 goto exit; void* sohandle = ptrace_retval(®s); //返回加载动态库句柄 #define FUNCTION_NAME_ADDR_OFFSET 0x100 ptrace_writedata(target_pid,map_base+FUNCTION_NAME_ADDR_OFFSET,func_name,strlen(func_name)+1); //将动态库中函数hook_entry的名称写入 分配地址+0x100的地方 parameters[0] = sohandle; parameters[1] = map_base + FUNCTION_NAME_ADDR_OFFSET; if(ptrace_call_wrapper(target_pid,"dlsym",dlsym_addr,parameters,2,®s)==-1) //调用dlsym,获得动态库中hook_entry的地址 goto exit; void* hook_entry_addr = ptrace_retval(®s); //获得hook_entry函数的地址 DEBUG_PRINT("hook_entry_addr = %p\n",hook_entry_addr); #define FUNCTION_PARAM_ADDR_OFFSET 0x200 ptrace_writedata(target_pid,map_base+FUNCTION_PARAM_ADDR_OFFSET,param,strlen(param)+1); //将传入参数 "I‘m parameter!" 写入分配地址空间+0x200处 parameters[0] = map_base + FUNCTION_PARAM_ADDR_OFFSET; if(ptrace_call_wrapper(target_pid,"hook_entry",hook_entry_addr,parameters,1,®s)==-1) //调用注入的动态库中hook_entry函数,传入参数"I‘m parameter!" goto exit; printf("Press enter to dlclose and detach\n"); //结束,等待 getchar(); parameters[0] = sohandle; if(ptrace_call_wrapper(target_pid,"dlclose",dlclose,parameters,1,®s)==-1) //调用dlclose卸载动态库 goto exit; ptrace_setregs(target_pid,&original_regs); //还原寄存器 ptrace_detach(target_pid); //关闭 ret = 0; exit: return ret; } int main(int argc, char** argv) { pid_t target_pid; target_pid = find_pid_of("/system/bin/surfaceflinger"); inject_remote_process( target_pid, "/data/libhello.so", "hook_entry", "I‘m parameter!", strlen("I‘m parameter!") ); }
使用ps命令可以查看进程列表,然后输入进程的路径,注入进程
Android.mk:
LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) LOCAL_MODULE := inject LOCAL_SRC_FILES := inject.c LOCAL_LDLIBS += -L$(SYSROOT)/usr/lib -llog include $(BUILD_EXECUTABLE)
Application.mk
APP_ABI := x86 armeabi-v7a
然后使用ndk-build命令编译生成可执行文件,一定要在jni目录下,不然编译可能会报错,记住 __android_log_print函数前面有两个下划线,在Android.mk中申明的库 LOCAL_LDLIBS += -L$(SYSROOT)/usr/lib -llog
然后再来生成要注入的so文件,创建目录和文件
jni
hello.c
Android.mk
Application.mk
hello.c
#include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <android/log.h> #include <elf.h> #include <fcntl.h> #define LOG_TAG "DEBUG" #define LOGD(fmt,args...) __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG,fmt,##args) int hook_entry(char* a ){ LOGD("Hook success,pid=%d\n",getpid()); LOGD("Hello %s\n",a); //调用传入的参数 "I‘m parameter!"
return 0;
}
Android.mk
LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) LOCAL_LDLIBS := -L$(SYSROOT)/usr/lib -llog LOCAL_MODULE :=hello LOCAL_SRC_FILES:= hello.c include $(BUILD_SHARED_LIBRARY)
Application.mk
APP_ABI := x86 armeabi-v7a
使用ndk-build编译生成x86和arm平台下的so文件:
然后就可以执行,连接root过的Android或者Android虚拟机,将inject和so文件考入设备,设置执行权限,执行。
我们现在可以查看进程内存,另起一个cmd窗口 ,因为我们在文件中的Log标志为INJECT,所以我们先打印log
使用 adb logcat -s INJECT
可以看到我们注入的进程id为36,我们查看这个进程的内存中加载的模块
使用命令 cat /proc/36/maps
...
注入成功!我们现在在原来的基础上,在so文件中替换目标程序的动态链接库中got表,来实现函数的hook
首先我们了解一下动态加载机制,
1、模块甲在编译期间,将要引用的模块乙的名字与函数名写入自身的符号表。
2、运行期模块甲调用时,调用流程是从调用代码到PLT表到GOT表再跳入模块乙。
也就是got表中保存着函数地址。
更多了解可以参考:ELF文件格式解析
修改hello.c文件
#include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <android/log.h> #include <elf.h> #include <EGL/egl.h> #include <GLES/gl.h> #include <elf.h> #include <fcntl.h> #include <sys/mman.h> #define LOG_TAG "DEBUG" #define LOGD(fmt,args...) __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG,fmt,##args) EGLBoolean (*old_eglSwapBuffers)(EGLDisplay dpy,EGLSurface surf) = -1; EGLBoolean new_eglSwapBuffers(EGLDisplay dpy,EGLSurface surface) { LOGD("New eglSwapBuffers"); if(old_eglSwapBuffers==-1) LOGD("error\n"); return old_eglSwapBuffers(dpy,surface); } void* get_module_base(pid_t pid,const char* module_name) { FILE* fp; long addr = 0; char *pch; char filename[32]; char line[1024]; if(pid<0){ snprintf(filename,sizeof(filename),"/proc/self/maps",pid); }else{ snprintf(filename,sizeof(filename),"/proc/%d/maps",pid); } fp = fopen(filename,"r"); if(fp!=NULL){ while(fgets(line,sizeof(line),fp)){ if(strstr(line,module_name)){ pch = strtok(line,"-"); addr = strtoul(pch,NULL,16); if(addr==0x8000) addr = 0; break; } } fclose(fp); } return (void*)addr; } #define LIBSF_PATH "/system/lib/libsurfaceflinger.so" int hook_eglSwapBuffers() { old_eglSwapBuffers = eglSwapBuffers; //保存系统中原来eglSwapBuffers函数地址,在Android.mk中加入库 LOGD("Orig eglSwapBuffers = %p\n",old_eglSwapBuffers); void* base_addr = get_module_base(getpid(),LIBSF_PATH); //动态库地址 LOGD("libsurfaceflinger.so address = %p\n",base_addr); int fd; fd = open(LIBSF_PATH,O_RDONLY); if(fd==-1){ LOGD("error\n"); return -1; } Elf32_Ehdr ehdr; //ELF header read(fd,&ehdr,sizeof(Elf32_Ehdr)); //读取ELF文件格式的文件头信息 unsigned long shdr_addr = ehdr.e_shoff; //section header table文件中的偏移 int shnum = ehdr.e_shnum; //section header table中有多少个条目 int shent_size = ehdr.e_shentsize; //section header table每一个条目的大小 unsigned long stridx = ehdr.e_shstrndx; //包含节名称的字符串是第几个节(从0开始) Elf32_Shdr shdr; //节头结构定义 lseek(fd,shdr_addr+stridx*shent_size,SEEK_SET); //偏移到文件尾 read(fd,&shdr,shent_size); //读取字符串表的信息 char* string_table = (char*)malloc(shdr.sh_size);//分配内存 lseek(fd,shdr.sh_offset,SEEK_SET);//偏移到字符串表 read(fd,string_table,shdr.sh_size); //读取字符串表的内容 lseek(fd,shdr_addr,SEEK_SET);//还原指针到section header table处 int i; uint32_t out_addr = 0; uint32_t out_size = 0; uint32_t got_item = 0; int32_t got_found = 0; for(i = 0; i < shnum; i++){//每个节头信息,找到got表 read(fd,&shdr,shent_size); if(shdr.sh_type == SHT_PROGBITS){ int name_idx = shdr.sh_name;//名称索引 if(strcmp(&(string_table[name_idx]),".got.plt")==0 || strcmp(&(string_table[name_idx]),".got")==0){ out_addr = base_addr + shdr.sh_addr;//获得got表 out_size = shdr.sh_size; LOGD("out_addr = %lx,out_size = %lx\n",out_addr,out_size); for(i=0;i<out_size;i+=4){ got_item = *(uint32_t*)(out_addr+i); if(got_item == old_eglSwapBuffers){ LOGD("Found eglSwapBuffers in got\n"); got_found = 1; //hook uint32_t page_size = getpagesize(); uint32_t entry_page_start = (out_addr + i)&(~(page_size-1)); mprotect((uint32_t*)entry_page_start,page_size,PROT_READ|PROT_WRITE); *(uint32_t*)(out_addr + i) = new_eglSwapBuffers; break; }else if(got_item == new_eglSwapBuffers){ LOGD("Already hooked\n"); break; } } if(got_found) break; } } } free(string_table); close(fd); } int hook_entry(char* a ){ LOGD("Hook success,pid=%d\n",getpid()); LOGD("Hook information: %s\n",a); LOGD("Start hooking\n"); hook_eglSwapBuffers(); return 0; }
Android.ml改为
LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) LOCAL_LDLIBS := -L$(SYSROOT)/usr/lib -llog -lEGL LOCAL_MODULE :=hello LOCAL_SRC_FILES:= hello.c include $(BUILD_SHARED_LIBRARY)
Application.mk改为
APP_ABI := x86 armeabi-v7a APP_PLATFORM := android-14
运行ndk-build编译,和上面一样执行,我们可以看到log信息已经hook成功了
参考 Android中so的注入(inject)和挂钩(hook) - For both x86 and arm
Android下通过root实现对system_server中binder的ioctl调用拦截
标签:
原文地址:http://www.cnblogs.com/aliflycoris/p/5787171.html