标签:
#ifndef _GRAPH_H #define _GRAPH_H #include <iostream> #include <string.h> #include <assert.h> #include <queue> using namespace::std; #define MAX_COST 0x7FFFFFFF //花费无限大设为整型最大值 /////////////////////////////////////////////////////////////////////////////////////////// //通用图结构 template <typename T, typename E> class graph{ public: bool is_empty()const; bool is_full()const; int get_numvertices()const; //当前顶点数 int get_numedges()const; //当前边数 public: virtual bool insert_vertex(const T&) = 0; //插入顶点 virtual bool insert_edge(const T&, const T&, E) = 0; //插入边 virtual int get_firstneighbor(const T&)const = 0; //得到第一个邻接顶点 virtual int get_nextneighbor(const T&, const T&)const = 0; //某邻接顶点的下一个邻接顶点 virtual void print_graph()const = 0; virtual int get_vertex_index(const T&)const = 0; //得到顶点序号 virtual void depth_first(const T&) = 0; virtual void broad_first(const T&) = 0; virtual void min_spantree_kruskal() = 0; virtual void min_spantree_prim(const T&) = 0; protected: static const int VERTICES_DEFAULT_SIZE = 10; //默认图顶点数 int max_vertices; int num_vertices; int num_edges; }; template <typename T, typename E> bool graph<T, E>::is_empty()const { return num_edges == 0; } template <typename T, typename E> bool graph<T, E>::is_full()const { return num_vertices >= max_vertices || num_edges >= max_vertices*(max_vertices-1)/2; //判满,分为顶点满和边满 } template <typename T, typename E> int graph<T, E>::get_numvertices()const { return num_vertices; } template <typename T, typename E> int graph<T, E>::get_numedges()const { return num_edges; } /////////////////////////////////////////////////////////////////////////////////////////// #define VERTICES_DEFAULT_SIZE graph<T, E>::VERTICES_DEFAULT_SIZE #define num_vertices graph<T, E>::num_vertices #define num_edges graph<T, E>::num_edges #define max_vertices graph<T, E>::max_vertices /////////////////////////////////////////////////////////////////////////////////////////// #endif /*graph.h*/
#pragma once #include "graph.h" //图的邻接矩阵表示法 template <typename T, typename E> class graph_mtx : public graph<T, E>{ public: graph_mtx(int); ~graph_mtx(); public: bool insert_vertex(const T&); bool insert_edge(const T&, const T&, E); int get_firstneighbor(const T&)const; int get_nextneighbor(const T&, const T&)const; int get_vertex_index(const T&)const; T& get_vertex_symbol(const int)const; void print_graph()const; void depth_first(const T&); void broad_first(const T&); void min_spantree_kruskal(); void min_spantree_prim(const T&); protected: void depth_first(const T&, bool *); private: T* vertices_list; //顶点线性表 E **edge; //内部矩阵 }; template <typename T, typename E> graph_mtx<T, E>::graph_mtx(int sz = VERTICES_DEFAULT_SIZE) { max_vertices = sz > VERTICES_DEFAULT_SIZE ? sz : VERTICES_DEFAULT_SIZE; vertices_list = new T[max_vertices]; edge = new int*[max_vertices]; //动态申请二维数组 for(int i=0; i<max_vertices; ++i){ edge[i] = new int[max_vertices]; } for(int i=0; i<max_vertices; ++i) for(int j=0; j<max_vertices; ++j){ if(i != j) edge[i][j] = MAX_COST; else edge[i][j] = 0; } num_vertices = 0; num_edges = 0; } template <typename T, typename E> graph_mtx<T, E>::~graph_mtx() { for(int i=0; i<max_vertices; ++i) delete []edge[i]; //分别析构,再总析构 delete edge; delete []vertices_list; } template <typename T, typename E> bool graph_mtx<T, E>::insert_vertex(const T& vert) { if(this->is_full()) //派生类函数调用父类函数,用this或加作用域 return false; vertices_list[num_vertices++] = vert; return true; } template <typename T, typename E> bool graph_mtx<T, E>::insert_edge(const T& vert1, const T& vert2, E cost = MAX_COST)//由于权值存在默认值,get_neighbor的操作需判断是否等于MAX_COST,否则不能正常取得邻接顶点 { if(this->is_full()) //判满 return false; int index_v1 = get_vertex_index(vert1); //得到顶点序号 int index_v2 = get_vertex_index(vert2); if(index_v1 == -1 || index_v2 == -1 ) return false; edge[index_v1][index_v2] = edge[index_v2][index_v1] = cost; //无向图 ++num_edges; return true; } template <typename T, typename E> int graph_mtx<T, E>::get_firstneighbor(const T& vert)const { int index = get_vertex_index(vert); if(index != -1){ for(int i=0; i<num_vertices; ++i){ if(edge[index][i] != 0 && edge[index][i] != MAX_COST) //加上判断MAX_COST return i; } } return -1; } template <typename T, typename E> int graph_mtx<T, E>::get_nextneighbor(const T& vert1, const T& vert2)const { int index_v1 = get_vertex_index(vert1); int index_v2 = get_vertex_index(vert2); if(index_v1 != -1 && index_v2 != -1){ for(int i=index_v2+1; i<num_vertices; ++i){ if(edge[index_v1][i] != 0 && edge[index_v1][i] != MAX_COST) return i; } } return -1; } template <typename T, typename E> int graph_mtx<T, E>::get_vertex_index(const T& vert)const { for(int i=0; i<num_vertices; ++i){ if(vertices_list[i] == vert) return i; } return -1; } template <typename T, typename E> T& graph_mtx<T, E>::get_vertex_symbol(const int index)const { assert(index >= 0 && index < this->get_numvertices()); //assert(index >= 0 && index < num_vertices); //error,由于num_vertices本身是我们用宏替换父类该元素,在这里使用会出现双重宏 return vertices_list[index]; } template <typename T, typename E> void graph_mtx<T, E>::print_graph()const { if(this->is_empty()){ cout << "nil graph" << endl; //空图输出nil return; } for(int i=0; i<num_vertices; ++i){ cout << vertices_list[i] << " "; } cout << endl; for(int i=0; i<num_vertices; ++i){ for(int j=0; j<num_vertices; ++j){ if(edge[i][j] != MAX_COST) cout << edge[i][j] << " "; else cout << '@' << " "; //若权值无限大,以@代替 } cout << vertices_list[i] << endl; } } template <typename T, typename E> void graph_mtx<T, E>::depth_first(const T& vert) //深度优先,认准一条路往死走,无路可走再回退 { int num = this->get_numvertices(); bool *visited = new bool[num]; memset(visited, 0, sizeof(bool)*num); //首先全部赋值为假,遍历过后为真,防止图死循环 depth_first(vert, visited); cout << "end."; delete []visited; } template <typename T, typename E> void graph_mtx<T, E>::depth_first(const T& vert, bool *visited) { cout << vert << "-->"; int index = get_vertex_index(vert); visited[index] = true; int neighbor_index = get_firstneighbor(vert); while(neighbor_index != -1){ if(!visited[neighbor_index]) depth_first(get_vertex_symbol(neighbor_index), visited); //递归 neighbor_index = get_nextneighbor(vert, get_vertex_symbol(neighbor_index)); } } template <typename T, typename E> void graph_mtx<T, E>::broad_first(const T& vert) { int num = this->get_numvertices(); bool *visited = new bool[num]; int index = get_vertex_index(vert); assert(index != -1); memset(visited, 0, sizeof(bool)*num); queue<int> que; //通过队列,将元素以次入队 que.push(index); cout << vert << "-->"; visited[index] = true; while(!que.empty()){ int index_tmp = que.front(); que.pop(); int neighbor_index = get_firstneighbor(get_vertex_symbol(index_tmp)); while(neighbor_index != -1){ if(!visited[neighbor_index]){ cout << get_vertex_symbol(neighbor_index) << "-->"; visited[neighbor_index] = true; //遍历过后为真,防止图死循环 que.push(neighbor_index); } neighbor_index = get_nextneighbor(get_vertex_symbol(index_tmp), get_vertex_symbol(neighbor_index)); } } cout << "end."; delete []visited; } ////////////////////////////////////////////////////////////////// //min_spactree_kruskal template <typename T, typename E> struct _mst_edge{ //最小生成树边的结构体,<begin, end>为一组边,cost为花费 int begin; int end; E cost; }; template <typename T, typename E> int compare(const void* vp1, const void* vp2) { return (*(_mst_edge<T, E> *)vp1).cost - (*(_mst_edge<T, E> *)vp2).cost; } bool _is_same(int *father, int begin, int end) //判断是否在同一张子图中 { while(father[begin] != begin) begin = father[begin]; while(father[end] != end) end = father[end]; return begin == end; //以最后一个元素是否存在父子关系判断 } void mark_same(int *father, int begin, int end) { while(father[begin] != begin) begin = father[begin]; while(father[end] != end) end = father[end]; father[end] = begin; //让最后一个元素连接起来,使它们成为同一子图的元素 } template <typename T, typename E> void graph_mtx<T, E>::min_spantree_kruskal() { int num = this->get_numvertices(); _mst_edge<T, E> *mst_edge = new _mst_edge<T, E>[num*(num-1)/2]; int k = 0; for(int i=0; i<num; ++i) for(int j=i+1; j<num; ++j){ //建立有效边结构体数组,从i+1开始,直接统计矩阵1/2边数,不会产生重复 if(edge[i][j] != MAX_COST){ mst_edge[k].begin = i; mst_edge[k].end = j; mst_edge[k].cost = edge[i][j]; ++k; } } qsort(mst_edge, k, sizeof(_mst_edge<T, E>), compare<T, E>); //调用快速排序函数 int *father = new int[num]; //初始化使所有元素的父指向自己 for(int i=0; i<num; ++i) father[i] = i; for(int i=0; i<num; ++i) if(!_is_same(father, mst_edge[i].begin, mst_edge[i].end)){ //判断是否在同一张子图中 cout << get_vertex_symbol(mst_edge[i].begin) << "-->" << get_vertex_symbol(mst_edge[i].end) << ":" << mst_edge[i].cost << endl; mark_same(father, mst_edge[i].begin, mst_edge[i].end); //加入后做标记 } delete []father; delete []mst_edge; } ////////////////////////////////////////////////////////////////// //min_spantree_prim template <typename T, typename E> void graph_mtx<T, E>::min_spantree_prim(const T& vert) { int num = this->get_numvertices(); int *lowcost = new int[num]; //最小花费数组 int *mst = new int[num]; //起始位置数组 <mst[i], i> 为一组边,起始为mst[i] int index = get_vertex_index(vert); assert(index != -1); for(int i=0; i<num; ++i){ //初始化使每个元素默认花费是以起始边为vert作为基准,所以mst[i]对应下标即为vert的下标index if(edge[index][i] != 0){ lowcost[i] = edge[index][i]; mst[i] = index; } else lowcost[i] = 0; } for(int i=0; i<num-1; ++i){ //循化,num个元素共有num-1条边 int min = MAX_COST; int min_index = -1; for(int j=0; j<num; ++j){ if(lowcost[j] != 0 && lowcost[j] < min){ //找出最小花费 min = lowcost[j]; min_index = j; } } cout << get_vertex_symbol(mst[min_index]) << "-->" << get_vertex_symbol(min_index) << ":" << min << endl; lowcost[min_index] = 0; //花费为0,相当于加入已生成树中 for(int j=0; j<num; ++j){ //循环,如果某元素到新元素的花费比默认花费小,那么就更新它, int cost = edge[min_index][j];//下次再循环到上面找最小花费时,就可能找到更新的这个最小花费,这就相当于每次加入新元素后 if(cost < lowcost[j]){ //其他顶点挑出与已生成树所有顶点的花费最小值,并更新 lowcost[j] = cost; mst[j] = min_index; } } } delete []lowcost; delete []mst; }
#include "graph.h" #include "graph_mtx.h" #define VERTEX_SIZE 4 int main() { graph_mtx<char, int> gm; gm.insert_vertex('A'); gm.insert_vertex('B'); gm.insert_vertex('C'); gm.insert_vertex('D'); gm.insert_vertex('E'); gm.insert_vertex('F'); gm.insert_edge('A', 'B', 6); gm.insert_edge('A', 'C', 1); gm.insert_edge('A', 'D', 5); gm.insert_edge('B', 'C', 5); gm.insert_edge('B', 'E', 3); gm.insert_edge('C', 'D', 5); gm.insert_edge('C', 'F', 4); gm.insert_edge('D', 'F', 2); gm.insert_edge('E', 'F', 6); gm.insert_edge('C', 'E', 6); gm.print_graph(); cout << "depth_first traverse:" << endl; gm.depth_first('A'); cout << endl; cout << "broad_first traverse:" << endl; gm.broad_first('A'); cout << endl; cout << "min_spantree_kruskal :" << endl; gm.min_spantree_kruskal(); cout << "min_spantree_prim :" << endl; gm.min_spantree_prim('A'); return 0; }
图的深度优先搜索和广度优先搜索算法、最小生成树两种算法 --C++实现
标签:
原文地址:http://blog.csdn.net/freeelinux/article/details/52245100