标签:
BFS在求解最短路径或者最短步数上有很多的应用。应用最多的是在走迷宫上。
分析
树的定义本身就是一种递归定义,因此对于树相关的算法题,递归是最好的解决思路(在递归深度允许的情况下)。
递归版
public class Solution { public boolean isSymmetric(TreeNode root) { return root==null||isMirror(root.left,root.right); } private boolean isMirror(TreeNode p,TreeNode q){ if(p==null&&q==null) return true; if(p==null||q==null) return false; if(p.val!=q.val) return false; return isMirror(p.left,q.right)&&isMirror(p.right,q.left); } }跌代版
public class Solution { public boolean isSymmetric(TreeNode root) { if(root==null) return true; Stack<TreeNode> stack = new Stack<TreeNode>(); TreeNode left, right; if(root.left!=null){ if(root.right==null) return false; stack.push(root.left); stack.push(root.right); } else if(root.right!=null){ return false; } while(!stack.empty()){ if(stack.size()%2!=0) return false; right = stack.pop(); left = stack.pop(); if(right.val!=left.val) return false; if(left.left!=null){//左子树的左子树和右子树的右子树比较 if(right.right==null) return false; stack.push(left.left); stack.push(right.right); } else if(right.right!=null){ return false; } if(left.right!=null){//左子树的右子树和右子树的左子树比较 if(right.left==null) return false; stack.push(left.right); stack.push(right.left); } else if(right.left!=null){ return false; } } return true; } }
分析
层次遍历可以利用队列实现。
public class Solution { public List<List<Integer>> levelOrder(TreeNode root) { List<List<Integer>> levels = new ArrayList<List<Integer>>(); if (root == null) return levels; Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.add(root); while (!queue.isEmpty()) { List<Integer> list = new ArrayList<Integer>(); Queue<TreeNode> nextQueue = new LinkedList<TreeNode>(); while (!queue.isEmpty()) { TreeNode node = queue.poll(); list.add(node.val);//记录层次遍历的结果 if (node.left != null) nextQueue.add(node.left); if (node.right != null) nextQueue.add(node.right); } queue = nextQueue; levels.add(list); } return levels; } }
分析
与上一题的唯一区别:节点遍历的顺序会交替变换,我们只需要用一个变量标记每次遍历的顺序即可。
public class Solution { public List<List<Integer>> zigzagLevelOrder(TreeNode root) { List<List<Integer>> levels = new LinkedList<List<Integer>>(); if (root == null) return levels; Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.add(root); int mark = 0;//遍历方向的标记 while (!queue.isEmpty()) { List<Integer> list = new ArrayList<Integer>(); Queue<TreeNode> nextqueue = new LinkedList<TreeNode>(); while (!queue.isEmpty()) { TreeNode node = queue.poll(); list.add(node.val); if (node.left != null) nextqueue.add(node.left); if (node.right != null) nextqueue.add(node.right); } queue = nextqueue; if (mark == 1)//不同标记不同方向 Collections.reverse(list); mark = (mark + 1) % 2; levels.add(list); } return levels; } }
分析
与上上题的唯一区别:将结果集逆序。
public class Solution { public List<List<Integer>> levelOrderBottom(TreeNode root) { List<List<Integer>> levels=new ArrayList<List<Integer>>(); if(root==null)return levels; Queue<TreeNode> queue=new LinkedList<TreeNode>(); queue.add(root); while(!queue.isEmpty()){ List<Integer> list=new ArrayList<Integer>(); Queue<TreeNode> nextQueue=new LinkedList<TreeNode>(); while(!queue.isEmpty()){ TreeNode node=queue.poll(); list.add(node.val); if(node.left!=null)nextQueue.add(node.left); if(node.right!=null)nextQueue.add(node.right); } queue=nextQueue; levels.add(list); } Collections.reverse(levels);//将结果集逆序即可 return levels; } }
递归版
public class Solution { public int minDepth(TreeNode root) { if(root==null)return 0; return doMinDepth(root); } public int doMinDepth(TreeNode root) { if(root==null) return Integer.MAX_VALUE; if(root.left==null&&root.right==null) return 1; int leftDepth=doMinDepth(root.left); int rightDepth=doMinDepth(root.right); return 1+Math.min(leftDepth, rightDepth); } }迭代版
利用后序遍历可以遍历所有从根节点的路径。
public class Solution { public int minDepth(TreeNode root) { if (root == null) return 0; Stack<TreeNode> stack=new Stack<TreeNode>(); Map<TreeNode,Boolean> visit=new HashMap<TreeNode,Boolean>(); int min=Integer.MAX_VALUE; TreeNode p=root; while(p!=null||!stack.isEmpty()){//后续遍历 while(p!=null){ stack.push(p); p=p.left; } p=stack.peek(); if(p.left==null&&p.right==null){ min=Math.min(min, stack.size()); } if(p.right!=null){//具有右子树 if(visit.get(p)==null){//第一次出现在栈顶 visit.put(p, true); //处理右子树 p=p.right; } else{//第二次出现在栈顶 stack.pop(); p=null; //右子树已经处理过了 } }else{ stack.pop(); p=null; } } return min; } }
分析
初始化:location=0(<row=0,col=0>)。利用宽度优先遍历算法,搜寻从location(<row,col>)出发所有连通的‘O’。然后判定连通集合是否被包围,如果被包围则全部置为‘X’,否则全部标记为未被包围。然后,从下一个可能被包围的location开始继续上述步骤,直到找不到下一个可能被包围的location,算法结束。
public class Solution { private void doSolve(char[][] board,HashSet<Integer> unSurrounded,int location){ int m=board.length,n=board[0].length; while(location<m*n){//找到第一个可能被包围的'O' int r=location/n,c=location%n; if(board[r][c]=='O'&&!unSurrounded.contains(location)){ break; } location++; } if(location==m*n)return;//处理完毕 //宽度优先遍历 HashSet<Integer> founded=new HashSet<Integer>();//所有搜索到的 HashSet<Integer> current=new HashSet<Integer>();//当前元素 founded.add(location); current.add(location); while(true){ HashSet<Integer> newLocations=new HashSet<Integer>(); for(Integer i:current){ int r=i/n,c=i%n; //依次考虑上下左右的位置 if(r>0&&board[r-1][c]=='O'&&!founded.contains(i-n)){ founded.add(i-n);newLocations.add(i-n);}//上 if(r<m-1&&board[r+1][c]=='O'&&!founded.contains(i+n)){ founded.add(i+n);newLocations.add(i+n);}//下 if(c>0&&board[r][c-1]=='O'&&!founded.contains(i-1)){ founded.add(i-1);newLocations.add(i-1);}//左 if(c<n-1&&board[r][c+1]=='O'&&!founded.contains(i+1)){ founded.add(i+1);newLocations.add(i+1);}//右 } if(newLocations.size()==0){ break; }else{ current=newLocations;//只有新增的位置,才能搜索到新增位置 } } //检查是否被包含 boolean surrounded=true; for(Integer i:founded){ int r=i/n,c=i%n; if(r==0||r==m-1||c==0||c==n-1){ surrounded=false; break; } } if(surrounded){ for(Integer i:founded){ int r=i/n,c=i%n; board[r][c]='X'; } }else{ for(Integer i:founded){ unSurrounded.add(i); } } doSolve(board,unSurrounded,location);//递归求解 } public void solve(char[][] board) { if(board.length==0||board[0].length==0)return; HashSet<Integer> unSurrounded=new HashSet<Integer>();//未被包围的'O' doSolve(board,unSurrounded,0); } }
分析
该问题等价于层次遍历过程中,每一层的末尾元素。
public class Solution { public List<Integer> rightSideView(TreeNode root) { List<Integer> res = new ArrayList<Integer>(); if (root == null) return res; Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.add(root); while (!queue.isEmpty()) { Queue<TreeNode> nextQueue = new LinkedList<TreeNode>(); TreeNode last=null;//记录每层末尾的元素 while (!queue.isEmpty()) { TreeNode node = queue.poll(); last=node; if (node.left != null) nextQueue.add(node.left); if (node.right != null) nextQueue.add(node.right); } queue = nextQueue; res.add(last.val); } return res; } }
分析
依然是宽度优先遍历,思路几乎与上上题一致。从location开始搜索连通集合,然后将连通集合标记为已找到的island。然后,寻找下一个可能是island的location,继续上述搜索过程,直到找不到可能的island。
private int findIslands(char[][] grid,HashSet<Integer> islandLocation,int location){ int m=grid.length,n=grid[0].length; while(location<m*n){//找到第一个可能是island的'1' int r=location/n,c=location%n; if(grid[r][c]=='1'&&!islandLocation.contains(location)){ break; } location++; } if(location==m*n) return 0;//处理完毕 //宽度优先遍历 HashSet<Integer> founded=new HashSet<Integer>();//所有搜索到的'1' HashSet<Integer> current=new HashSet<Integer>();//当前元素 founded.add(location); current.add(location); while(true){ HashSet<Integer> newLocations=new HashSet<Integer>(); for(Integer i:current){ int r=i/n,c=i%n; //依次考虑上下左右的位置 if(r>0&&grid[r-1][c]=='1'&&!founded.contains(i-n)){ founded.add(i-n);newLocations.add(i-n);}//上 if(r<m-1&&grid[r+1][c]=='1'&&!founded.contains(i+n)){ founded.add(i+n);newLocations.add(i+n);}//下 if(c>0&&grid[r][c-1]=='1'&&!founded.contains(i-1)){ founded.add(i-1);newLocations.add(i-1);}//左 if(c<n-1&&grid[r][c+1]=='1'&&!founded.contains(i+1)){ founded.add(i+1);newLocations.add(i+1);}//右 } if(newLocations.size()==0){ break; }else{ current=newLocations;//只有新增的位置,才能搜索到新增位置 } } for(Integer i:founded){//标记为island islandLocation.add(i); } return 1+findIslands(grid,islandLocation,location);//递归求解 } public int numIslands(char[][] grid) { if(grid.length==0||grid[0].length==0)return 0; HashSet<Integer> islandLocation=new HashSet<Integer>(); return findIslands(grid,islandLocation,0); }
深度优先搜索(回溯法)作为最基本的搜索算法,其采用了一种“一直向下走,走不通就掉头”的思想(体会“回溯”二字),相当于采用了先根遍历的方法来构造搜索树。
分析
方案一:中序遍历
因为二叉查找数的中序遍历是递增的,我们可以利用这个性质进行验证。
public class Solution { public boolean isValidBST(TreeNode root) { //查找树的中序遍历为递增的 if(root==null)return true; TreeNode pre=null;//上一个节点 Stack<TreeNode> stack=new Stack<TreeNode>(); TreeNode p=root; while(p!=null||!stack.isEmpty()){ while(p!=null){ stack.push(p); p=p.left; } p=stack.pop(); if(pre==null||pre.val<p.val){ pre=p; }else{ return false; } if(p.right!=null){//处理右子树 p=p.right; }else{//处理上一层 p=null; } } return true; } }方案二:深度优先搜索
public class Solution { public boolean isValidBST(TreeNode root) { return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE);//验证树中节点的值域 } public boolean isValidBST(TreeNode root, long minVal, long maxVal) { if (root == null) return true; if (root.val >= maxVal || root.val <= minVal) return false;//检查根节点的值是否在值域内 //根据根节点的值,限定子树节点的值域 return isValidBST(root.left, minVal, root.val) && isValidBST(root.right, root.val, maxVal); } }
方案一:中序遍历
假如,正常的中序遍历结果为1,2,3,4,5,6,7,8。交换后的中序遍历结果变成1,7,3,4,5,6,2,8,我们如何找到两个颠倒位置的元素呢?
不难发现,重前往后第一个波峰,和从后往前第一个波谷。对于边界,假定最左边有个负无穷的元素,最右边有个正无穷的元素。
空间复杂度为O(n),时间复杂度为O(n)。
public class Solution { public void recoverTree(TreeNode root) { //查找树的中序遍历为递增,先获取中序遍历,再定位交换位置 if(root==null)return ; List<TreeNode> list=new ArrayList<TreeNode>(); Stack<TreeNode> stack=new Stack<TreeNode>(); TreeNode p=root; while(p!=null||!stack.isEmpty()){ while(p!=null){ stack.push(p); p=p.left; } p=stack.pop(); list.add(p); if(p.right!=null){//处理右子树 p=p.right; }else{//处理上一层 p=null; } } TreeNode firstNode=null; TreeNode secondNode=null; for(int i=0;i<list.size();i++){//从前往后找到第一个小大小 if(i==0){ if(list.get(i).val>list.get(i+1).val){ firstNode=list.get(i); break; } }else{ if(list.get(i-1).val<list.get(i).val&&list.get(i).val>list.get(i+1).val){ firstNode=list.get(i); break; } } } for(int i=list.size()-1;i>=0;i--){//从后往前找到第一个大小大 if(i==list.size()-1){ if(list.get(i-1).val>list.get(i).val){ secondNode=list.get(i); break; } }else{ if(list.get(i-1).val>list.get(i).val&&list.get(i).val<list.get(i+1).val){ secondNode=list.get(i); break; } } } int t=firstNode.val;firstNode.val=secondNode.val;secondNode.val=t;//交换 } }
方案二
方案一的解决思路非常直观,但是却需要O(n)的空间复杂度。如果能在中序遍历过程中标记错位的节点,空间复杂度就降为O(1)。
注:这里所说的O(1)空间复杂度,应该不考虑迭代过程中的栈空间,特此说明。
见讨论区:https://discuss.leetcode.com/topic/2200/an-elegent-o-n-time-complexity-and-o-1-space-complexity-algorithm/2
public class Solution { public void recoverTree(TreeNode root) { //查找树的中序遍历为递增,先获取中序遍历,再定位交换位置 if(root==null)return ; Stack<TreeNode> stack=new Stack<TreeNode>(); TreeNode firstNode=null; TreeNode secondNode=null; TreeNode p=root; TreeNode preNode=null;//前驱 TreeNode prePreNode=null;//前驱的前驱 while(p!=null||!stack.isEmpty()){ while(p!=null){ stack.push(p); p=p.left; } p=stack.pop(); if(preNode!=null){ //标记第一个小大小 if(firstNode==null&&preNode.val>p.val &&(prePreNode==null||prePreNode.val<preNode.val)){ firstNode=preNode; } //标记最后一个大小大 if(prePreNode!=null){ if(prePreNode.val>preNode.val&&preNode.val<p.val){ secondNode=preNode; } } if(p.right==null&&stack.isEmpty()){//最后一个节点特殊处理 if(preNode.val>p.val){ secondNode=p; } } } prePreNode=preNode;preNode=p; if(p.right!=null){//处理右子树 p=p.right; }else{//处理上一层 p=null; }//这里为了阐述思路,其实可以简化为 p=p.right; } int t=firstNode.val;firstNode.val=secondNode.val;secondNode.val=t;//交换 } }
public class Solution { public boolean isSameTree(TreeNode p, TreeNode q) { if(p==null&&q==null) return true; if(p==null||q==null) return false; return p.val==q.val&&isSameTree(p.left,q.left)&&isSameTree(p.right,q.right); } }
public class Solution { public boolean isSymmetric(TreeNode root) { return root==null||isMirror(root.left,root.right); } private boolean isMirror(TreeNode p,TreeNode q){ if(p==null&&q==null) return true; if(p==null||q==null) return false; if(p.val!=q.val) return false; return isMirror(p.left,q.right)&&isMirror(p.right,q.left); } }跌代版
public class Solution { public boolean isSymmetric(TreeNode root) { if(root==null) return true; Stack<TreeNode> stack = new Stack<TreeNode>(); TreeNode left, right; if(root.left!=null){ if(root.right==null) return false; stack.push(root.left); stack.push(root.right); } else if(root.right!=null){ return false; } while(!stack.empty()){ if(stack.size()%2!=0) return false; right = stack.pop(); left = stack.pop(); if(right.val!=left.val) return false; if(left.left!=null){//左子树的左子树和右子树的右子树比较 if(right.right==null) return false; stack.push(left.left); stack.push(right.right); } else if(right.right!=null){ return false; } if(left.right!=null){//左子树的右子树和右子树的左子树比较 if(right.left==null) return false; stack.push(left.right); stack.push(right.left); } else if(right.left!=null){ return false; } } return true; } }
递归版
public class Solution { public int maxDepth(TreeNode root) { if(root==null)return 0; return doMaxDepth(root); } public int doMaxDepth(TreeNode root) { if(root==null) return Integer.MIN_VALUE; if(root.left==null&&root.right==null) return 1; int leftDepth=doMaxDepth(root.left); int rightDepth=doMaxDepth(root.right); return 1+Math.max(leftDepth, rightDepth); } }迭代版
二叉树的后序遍历(深度优先遍历)可以访问到所有从根节点出发的路径,我们只需要在遍历过程中记录最大深度即可。
public class Solution { public int maxDepth(TreeNode root) { Map<TreeNode,Boolean> visit=new HashMap<TreeNode,Boolean>(); //标记节点访问情况 if(root==null) return 0; int max=1; Stack<TreeNode> stack=new Stack<TreeNode>(); TreeNode p=root; while(p!=null||!stack.isEmpty()){ while(p!=null){ stack.push(p); p=p.left; } max=Math.max(max, stack.size());//记录最大深度 p=stack.peek(); if(p.right!=null){ if(visit.get(p)==null){ visit.put(p, true); p=p.right; } else{ visit.remove(p);//移除 stack.pop(); p=null; } }else{ stack.pop(); p=null; } } return max; } }
public class Solution { public TreeNode buildTree(int[] preorder, int[] inorder) { int n=preorder.length; if(n==0)return null; return doBuildTree(preorder,0,n-1,inorder,0,n-1); } public TreeNode doBuildTree(int[] preorder,int s1,int e1, int[] inorder,int s2,int e2){ if(e1<s1)return null; int rootindex = 0;//根节点在中序序列中的位置 for(int i=s2;i<=e2;i++){ if(inorder[i]==preorder[s1]){ rootindex=i; break; } } int leftCount=rootindex-s2;//左子树节点个数 TreeNode root=new TreeNode(preorder[s1]); root.left=doBuildTree(preorder,s1+1,s1+leftCount,inorder,s2,rootindex-1); root.right=doBuildTree(preorder,s1+leftCount+1,e1,inorder,rootindex+1,e2); return root; } }
public class Solution { public TreeNode buildTree(int[] inorder, int[] postorder) { int n=inorder.length; if(n==0)return null; return doBuildTree(inorder,0,n-1,postorder,0,n-1); } public TreeNode doBuildTree(int[] inorder,int s1,int e1, int[] postorder,int s2,int e2){ if(e1<s1)return null; int rootindex = 0; for(int i=s1;i<=e1;i++){ if(inorder[i]==postorder[e2]){ rootindex=i; break; } } int leftCount=rootindex-s1; TreeNode root=new TreeNode(postorder[e2]); root.left=doBuildTree(inorder,s1,rootindex-1,postorder,s2,s2+leftCount-1); root.right=doBuildTree(inorder,rootindex+1,e1,postorder,s2+leftCount,e2-1); return root; } }
public class Solution { public TreeNode sortedArrayToBST(int[] nums) { int n=nums.length; if(n==0)return null; return doSortedArrayToBST(nums,0,n-1); } public TreeNode doSortedArrayToBST(int[] nums,int start,int end) { if(end<start)return null; int mid=(start+end)/2; TreeNode root=new TreeNode(nums[mid]); root.left=doSortedArrayToBST(nums,start,mid-1); root.right=doSortedArrayToBST(nums,mid+1,end); return root; } }
基本思路不变。只是链表失去随机存取特性,寻找划分点的时候需要线性查找。
public class Solution { public TreeNode sortedListToBST(ListNode head) { ListNode p=head; int n=0; while(p!=null){ p=p.next; n++; } return buildBST(head,n); } private TreeNode buildBST(ListNode head,int length){ if(length==0)return null; TreeNode root=new TreeNode(-1); if(length==1){ root.val=head.val; return root; } int index=1; int mid=(1+length)/2; ListNode midNode=head; while(index<mid){ midNode=midNode.next; index++; } root.val=midNode.val; root.left=buildBST(head,mid-1); root.right=buildBST(midNode.next,length-mid); return root; } }
public class Solution { public boolean isBalanced(TreeNode root) { return lengthOfTree(root)!=-1; } private int lengthOfTree(TreeNode root){ if(root==null) return 0; int leftLength=lengthOfTree(root.left); int rightLength=lengthOfTree(root.right); if(leftLength==-1||rightLength==-1)return -1; if(Math.abs(leftLength-rightLength)>1)return -1; return Math.max(leftLength, rightLength)+1; } }
public class Solution { public int minDepth(TreeNode root) { if(root==null)return 0; return doMinDepth(root); } public int doMinDepth(TreeNode root) { if(root==null) return Integer.MAX_VALUE; if(root.left==null&&root.right==null) return 1; int leftDepth=doMinDepth(root.left); int rightDepth=doMinDepth(root.right); return 1+Math.min(leftDepth, rightDepth); } }迭代版
public class Solution { public int minDepth(TreeNode root) { if (root == null) return 0; Stack<TreeNode> stack=new Stack<TreeNode>(); Map<TreeNode,Boolean> visit=new HashMap<TreeNode,Boolean>(); int min=Integer.MAX_VALUE; TreeNode p=root; while(p!=null||!stack.isEmpty()){//后续遍历 while(p!=null){ stack.push(p); p=p.left; } p=stack.peek(); if(p.left==null&&p.right==null){ min=Math.min(min, stack.size()); } if(p.right!=null){//具有右子树 if(visit.get(p)==null){//第一次出现在栈顶 visit.put(p, true); p=p.right; } else{//第二次出现在栈顶 visit.remove(p); stack.pop(); p=null; } }else{ stack.pop(); p=null; } } return min; } }
public class Solution { public boolean hasPathSum(TreeNode root, int sum) { if(root==null) return false; if(root.left==null&&root.right==null&&sum==root.val){ return true; } return hasPathSum(root.left,sum-root.val)||hasPathSum(root.right,sum-root.val); } }迭代版
public class Solution { public boolean hasPathSum(TreeNode root, int sum) { if (root == null){ return false; } Stack<TreeNode> stack=new Stack<TreeNode>(); Map<TreeNode,Boolean> visit=new HashMap<TreeNode,Boolean>(); int min=Integer.MAX_VALUE; TreeNode p=root; int currentSum=0; while(p!=null||!stack.isEmpty()){//后续遍历 while(p!=null){ currentSum+=p.val; stack.push(p); p=p.left; } p=stack.peek(); if(p.left==null&&p.right==null){ if(currentSum==sum)return true; } if(p.right!=null){//具有右子树 if(visit.get(p)==null){//第一次出现在栈顶 visit.put(p, true); p=p.right; } else{//第二次出现在栈顶 visit.remove(p); stack.pop(); currentSum-=p.val; p=null; } }else{ currentSum-=p.val; stack.pop(); p=null; } } return false; } }
递归版
public class Solution { public List<List<Integer>> pathSum(TreeNode root, int sum) { List<List<Integer>> paths = new ArrayList<>(); pathSumUtil(paths, new ArrayList<Integer>(), root, sum); return paths; } private void pathSumUtil(List<List<Integer>> paths, List<Integer> currList, TreeNode root, int sum) { if (root == null) { return; } sum = sum - root.val; currList.add(root.val); if (sum == 0 && root.left == null && root.right == null) { paths.add(new ArrayList<>(currList));//copy } pathSumUtil(paths, new ArrayList<>(currList), root.left, sum); pathSumUtil(paths, new ArrayList<>(currList), root.right, sum); } }
迭代版
public class Solution { public List<List<Integer>> pathSum(TreeNode root, int sum) { List<List<Integer>> res=new ArrayList<List<Integer>>(); if(root==null) return res; Map<TreeNode,Boolean> visit=new HashMap<TreeNode,Boolean>(); Stack<TreeNode> stack=new Stack<TreeNode>(); int nowSum=0; TreeNode p=root; while(p!=null||!stack.isEmpty()){ while(p!=null){ stack.push(p); nowSum+=p.val; p=p.left; } p=stack.peek(); if(p.left==null&&p.right==null&&sum==nowSum){ List<Integer> r=new ArrayList<Integer>(); for(Object i:stack.toArray()) r.add((Integer)((TreeNode)i).val); res.add(r); } if(p.right!=null){ if(visit.get(p)==null){ visit.put(p, true); //第一次处理右子树 p=p.right; } else{ visit.remove(p); nowSum-=p.val; stack.pop(); p=null; } }else{ nowSum-=p.val; stack.pop(); p=null; } } return res; } }
递归版
public class Solution { public void flatten(TreeNode root) { if (root == null)return; doFlatten(root); } private TreeNode doFlatten(TreeNode root){//保证root!=null ,返回尾部节点 if(root.left==null&&root.right==null)return root; if(root.left==null){ TreeNode rightLast=doFlatten(root.right); root.right=root.right; root.left=null; return rightLast; } if(root.right==null){ TreeNode leftLast=doFlatten(root.left); root.right=root.left; root.left=null; return leftLast; } TreeNode leftLast=doFlatten(root.left); TreeNode rightLast=doFlatten(root.right); leftLast.right=root.right; root.right=root.left; root.left=null; return rightLast; } }迭代版
链表中的元素顺序即为先序遍历后的顺序。
public class Solution { public void flatten(TreeNode root) { if (root == null)return; List<TreeNode> list=new ArrayList<TreeNode>(); Stack<TreeNode> stack=new Stack<TreeNode>(); TreeNode p=root; while(p!=null||!stack.isEmpty()){ while(p!=null){ list.add(p); stack.push(p); p=p.left; } p=stack.pop(); p=p.right; } for(int i=0;i<list.size();i++){ TreeNode node=list.get(i); node.left=null; if(i==list.size()-1){ node.right=null; }else{ node.right=list.get(i+1); } } } }
递归版
public class Solution { public void connect(TreeLinkNode root) { if(root==null) return; if(root.left!=null){ root.left.next=root.right;//将当前节点的左右子树关联 if(root.next != null)//将同一级别的相邻树关联 root.right.next = root.next.left; } <pre name="code" class="java"> connect(root.right);connect(root.left); }}
迭代版
我们可以层次遍历树,遍历过程中将同一级别的节点串联起来。
public class Solution { public void connect(TreeLinkNode root) { if(root==null) return; LinkedList<TreeLinkNode> queue=new LinkedList<TreeLinkNode>(); queue.add(root); while(!queue.isEmpty()){ ArrayList<TreeLinkNode> list=new ArrayList<TreeLinkNode>(queue); for(int i=0;i<list.size()-1;i++){//将同一级的节点串联 list.get(i).next=list.get(i+1); } LinkedList<TreeLinkNode> nextQueue=new LinkedList<TreeLinkNode>(); while(!queue.isEmpty()){ TreeLinkNode node=queue.poll(); if(node.left!=null)nextQueue.add(node.left); if(node.right!=null)nextQueue.add(node.right); } queue=nextQueue; } } }
递归版
public class Solution { public void connect(TreeLinkNode root) { if(root==null) return; //将当前节点的左右子树关联 if(root.left!=null){// root.left.next=root.right; } //将同一级别的相邻树关联 TreeLinkNode pre=root.right!=null?root.right:root.left; TreeLinkNode nextTree=root.next;//相邻树 TreeLinkNode post=null; while(nextTree!=null&&post==null){ post=nextTree.left!=null?nextTree.left:nextTree.right; nextTree=nextTree.next; } if(pre!=null){ pre.next=post; } connect(root.right);//这里的顺序很关键 connect(root.left); //这里的顺序很关键 } }
迭代版(与上一题相同)
public class Solution { public void connect(TreeLinkNode root) { if(root==null) return; LinkedList<TreeLinkNode> queue=new LinkedList<TreeLinkNode>(); queue.add(root); while(!queue.isEmpty()){ ArrayList<TreeLinkNode> list=new ArrayList<TreeLinkNode>(queue); for(int i=0;i<list.size()-1;i++){//将同一级的节点串联 list.get(i).next=list.get(i+1); } LinkedList<TreeLinkNode> nextQueue=new LinkedList<TreeLinkNode>(); while(!queue.isEmpty()){ TreeLinkNode node=queue.poll(); if(node.left!=null)nextQueue.add(node.left); if(node.right!=null)nextQueue.add(node.right); } queue=nextQueue; } } }
public class Solution { public int maxPathSum(TreeNode root) { List<Integer> res=doMaxPathSum(root); return res.get(1); } //结果集中,第一个元素表示单向路径最大和,第二个元素表示最大路径和 public List<Integer> doMaxPathSum(TreeNode root){ List<Integer> res=new ArrayList<Integer>(); if(root==null){ res.add(Integer.MIN_VALUE); res.add(Integer.MIN_VALUE); return res; } List<Integer> leftRes=doMaxPathSum(root.left); List<Integer> rightRes=doMaxPathSum(root.right); int maxPath=root.val; if(Math.max(leftRes.get(0),rightRes.get(0))>0) maxPath+=Math.max(leftRes.get(0),rightRes.get(0)); res.add(maxPath); int maxSum=root.val; if(leftRes.get(0)>0)maxSum+=leftRes.get(0); if(rightRes.get(0)>0)maxSum+=rightRes.get(0); res.add(Math.max(maxSum,Math.max(leftRes.get(1),rightRes.get(1)))); return res; } }
public class Solution { public int sumNumbers(TreeNode root) { return dfs(root, 0); } private int dfs(TreeNode root, int sum) { if (root == null) return 0; if (root.left == null && root.right == null) return sum * 10 + root.val; return dfs(root.left, sum * 10 + root.val) + dfs(root.right, sum * 10 + root.val); } }
标签:
原文地址:http://blog.csdn.net/sunxianghuang/article/details/52316209