标签:
Android的消息机制主要是指Handler的运行机制,Handler的运行需要底层的MessageQueue和Looper的支撑。
消息队列,以队列的形式(实为单链表结构)对外提供插入和删除的工作,
Looper
以无限循环的形式不断获取MessageQueue中的消息,有则处理,无则等待。
ThreadLocal
ThreadLocal可以在不同的线程互不干扰的存储并提供数据,通过ThreadLocal可以很方便的获取每个线程的Looper
为什么要异步访问UI?
Android规定UI操作只能在主线程中执行,子线程执行UI操作则会抛出异常,在ViewRootImpl有如下方法:
void checkThread() {
if (mThread != Thread.currentThread()) {
throw new CalledFromWrongThreadException(
"Only the original thread that created a view hierarchy can touch its views.");
}
}
显然对于UI这类耗时操作我们不可能全部放在主线程中执行,那么就要采用异步的方式。
系统为何不允许在子线程去访问UI?
原因很简单,Android的UI线程是线程不安全的
为什么不采用加锁的方式处理UI线程?
- 会增加UI访问的逻辑复杂度
- 降低UI访问效率
至此,我们对异步消息的处理机制和必要性有了一个简单的了解
假设有如下需求:在子线程中更新TextView的文本显示
实现方式一:
mHandler = new Handler() {
@Override
public void handleMessage(Message msg) {
if (msg.what == 1) {
tv.setText(msg.obj.toString());
}
}
};
tv = (TextView) findViewById(R.id.tv);
new Thread(new Runnable() {
@Override
public void run() {
Message msg = new Message();
msg.what = 1;
msg.obj = "神荼";
mHandler.sendMessage(msg);
}
}).start();
实现方式二:
mHandler = new Handler();
mHandler.post(new Runnable() {
@Override
public void run() {
tv.setText("神荼");
}
});
实现方式三:
runOnUiThread(new Runnable() {
@Override
public void run() {
tv.setText("神荼");
}
});
实现方式四:
tv.post(new Runnable() {
@Override
public void run() {
tv.setText("神荼");
}
});
实现方式五:
开启加速,Google异步处理方案之AsyncTask(详情请关注我的下一篇Android多线程编程之AsyncTask篇)
上述代码都实现了同样的处理效果,但实现上却略有不同,预知详细原理,请跟进代码分析。
首先来看一下Handler的工作流程(来自郭神):
这个图清晰明白的展示出了handler异步消息处理的整个流程,我想各位看懂这个应该都是没问题,为了搞清楚内部的实现原理,我们就从handle发送消息的起点谈起,,
在第一种方式中,我们通过handle.sendMessage()方法发送一个Message对象,这个msg对象的第一站即MessageQueue,MessageQueue主要包含两个操作:插入(enqueueMessage)和读取(next)
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
上面的代码明显暴漏了这货维护的就是一个链表结构啊有木有,当该方法被调用时会向消息链表中插入新的消息对象。
再来看看next
Message next() {
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
if (mQuitting) {
dispose();
return null;
}
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
pendingIdleHandlerCount = 0;
nextPollTimeoutMillis = 0;
}
}
嗯,210-237行淋漓尽致的展现了msg是如何被取出并从链表中溢出的,没啥好说的,
我以前一直困惑Looper到底是个啥?是个类?还是个final类,不过这好像没啥意义啊…其实我们完全没必要知道它是啥,我们只要知道它对Handler形式的异步处理具有决定性的作用,实际上我们在创建Handler的时候必须伴随着两个方法的调用
这里假设你已经了解ThreadLocal这货是干啥的了,基于此来看一下该方法的源码
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
看到某,如果当前线程存在已经与之具有“绑定关系”的Looper,那么通过本地sThreadLocal获取即可,否则新建一个,重点来了
Looper对象所“绑定”的线程也就是我们消息接收的线程
所以,你现在知道了,Looper.prepare()获取与所在线程对应的Looper对象,决定消息接收处。
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn‘t called on this thread.");
}
final MessageQueue queue = me.mQueue;
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
这个玩的就更嗨了,先是获取MessageQueue对象,而后开启了自我轮回模式(无限循环),怎么轮回呢?看326行,从MessageQueue中不断地取出msg对象,然后将该msg对象分发传递出去(338),msg.target即为我们的handler对象,请注意,前方高能Handler源码解析开始…
接上面的msg.target.dispatchMessage(msg)该方法源码如下
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
看到没,该方法首先会判断callback接口,若非空,直接处理即可,这也恰恰对应了我们的第二种异步实现方式(简单来说就是直接传递一个Runnable,该Runnable最后会在Looper线程运行),那么第三种方式呢,也很类似不是么?看代码
public final void runOnUiThread(Runnable action) {
if (Thread.currentThread() != mUiThread) {
mHandler.post(action);
} else {
action.run();
}
}
看到某,就是第二种方式的封装版,而且省去了Handler的创建。
你可能要问了,mCallback是哪里冒出来野生奥特曼,干啥玩意的?
对应这个问题,我只能说,看代码
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can‘t create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
很明显这货来自于Handler的构造方法(不止一个),408行已然说明一切,最后我们看到在dispatchMessage终究要执行终极方法handleMessage(msg),于是乎消息对象来到了我们早已写好的handleMessage()方法中并在你Looper“绑定”的线程执行(一般都是主线程啦啦啦)…
ThreadLocal是一个线程内部的数据存储类,通过该类可以在指定的线程中存储数据,当然也只能获取当前线程的存储数据
在Handler异步消息处理中我们每个线程都要指定自己的Looper对象,那么如果没有该类,我们可能需要较为麻烦的方式去管理这些Looper对象,如hash表存储等
一个简单的使用示例
private ThreadLocal<Integer> mIntegerThreadLocal = new ThreadLocal<>();
mIntegerThreadLocal.set(111);
new Thread("Thread_1") {
@Override
public void run() {
mIntegerThreadLocal.set(222);
Log.d("TAG2", mIntegerThreadLocal.get().toString());
Log.d("TAG", Thread.currentThread().getName());
}
}.start();
new Thread("Thread_2") {
@Override
public void run() {
mIntegerThreadLocal.set(333);
Log.d("TAG3", mIntegerThreadLocal.get().toString());
Log.d("TAG", Thread.currentThread().getName());
}
}.start();
Log.d("TAG1", mIntegerThreadLocal.get().toString());
Log.d("TAG", Thread.currentThread().getName());
输出:
显然,结果表明了同一个对象在不同的线程有着不同的值,再来看一下它内部的源码实现(以搞懂源码为目标)
首先是set方法
public void set(T value) {
Thread currentThread = Thread.currentThread();
Values values = values(currentThread);
if (values == null) {
values = initializeValues(currentThread);
}
values.put(this, value);
}
看到某,ThreadLocal能根据不同线程维护不同Values对象(Thread内部产生),进而存储获取不同的数据,更具体的可以自行查阅源码。
再来看下get
public T get() {
// Optimized for the fast path.
Thread currentThread = Thread.currentThread();
Values values = values(currentThread);
if (values != null) {
Object[] table = values.table;
int index = hash & values.mask;
if (this.reference == table[index]) {
return (T) table[index + 1];
}
} else {
values = initializeValues(currentThread);
}
return (T) values.getAfterMiss(this);
}
和set类似,清楚明白不扯淡,就不多说了
聊了这么久,有人可能就问了,你说使用handler必须要调用Looper的prepare和loop方法,那么主线程(ActivityThread)并没有看到调用啊,你净扯犊子呢?
有此问的道友先息息火,关于这个问题其实很简单,Android已经为我们做好了封装,而且第一个方法调用的是Looper.prepareMainLooper()
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
OK,到此为止我相信你应该是彻底搞懂了了Handler的异步消息机制,如果还有什么疑问欢迎下方留言,当然我建议你能抽点时间自己去一点点的去阅读分析handler的源码,这样才能真正深刻的理解并记忆。
标签:
原文地址:http://blog.csdn.net/u014492609/article/details/52336413