标签:
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1452
题意:求2004^n的所有因子和。
1 #include <algorithm> 2 #include <iostream> 3 #include <iomanip> 4 #include <cstring> 5 #include <climits> 6 #include <complex> 7 #include <fstream> 8 #include <cassert> 9 #include <cstdio> 10 #include <bitset> 11 #include <vector> 12 #include <deque> 13 #include <queue> 14 #include <stack> 15 #include <ctime> 16 #include <set> 17 #include <map> 18 #include <cmath> 19 using namespace std; 20 #define fr first 21 #define sc second 22 #define cl clear 23 #define BUG puts("here!!!") 24 #define W(a) while(a--) 25 #define pb(a) push_back(a) 26 #define Rint(a) scanf("%d", &a) 27 #define Rll(a) scanf("%I64d", &a) 28 #define Rs(a) scanf("%s", a) 29 #define Cin(a) cin >> a 30 #define FRead() freopen("in", "r", stdin) 31 #define FWrite() freopen("out", "w", stdout) 32 #define Rep(i, len) for(int i = 0; i < (len); i++) 33 #define For(i, a, len) for(int i = (a); i < (len); i++) 34 #define Cls(a) memset((a), 0, sizeof(a)) 35 #define Clr(a, x) memset((a), (x), sizeof(a)) 36 #define Full(a) memset((a), 0x7f7f7f, sizeof(a)) 37 #define lrt rt << 1 38 #define rrt rt << 1 | 1 39 #define pi 3.14159265359 40 #define RT return 41 #define lowbit(x) x & (-x) 42 #define onecnt(x) __builtin_popcount(x) 43 typedef long long LL; 44 typedef long double LD; 45 typedef unsigned long long ULL; 46 typedef pair<int, int> pii; 47 typedef pair<string, int> psi; 48 typedef pair<int, int> pll; 49 typedef map<string, int> msi; 50 typedef vector<int> vi; 51 typedef vector<int> vl; 52 typedef vector<vl> vvl; 53 typedef vector<bool> vb; 54 55 const LL mod = 29; 56 LL n; 57 58 LL mul(LL x, LL q) { 59 LL ret = 1; 60 while(q) { 61 if(q & 1) ret = (ret * x) % mod; 62 q >>= 1; 63 x = (x * x) % mod; 64 } 65 return ret; 66 } 67 68 LL exgcd(LL a, LL b, LL &x, LL &y) { 69 if(b == 0) { 70 x = 1; 71 y = 0; 72 return a; 73 } 74 else { 75 LL ret = exgcd(b, a%b, x, y); 76 LL tmp = x; 77 x = y; 78 y = tmp - a / b * y; 79 return ret; 80 } 81 } 82 83 LL iv(LL a) { 84 LL x, y; 85 exgcd(a, mod, x, y); 86 return (x % mod + mod) % mod; 87 } 88 89 signed main() { 90 // FRead(); 91 while(cin >> n && n) { 92 cout << ((mul(2, 2*n+1)-1)%mod)*((mul(3, n+1)-1)*iv(2)%mod)*((mul(167,n+1)-1)*iv(166)%mod)%mod << endl; 93 } 94 RT 0; 95 }
[HDOJ1492]Happy 2004(数论,快速幂,逆元,积性函数)
标签:
原文地址:http://www.cnblogs.com/vincentX/p/5836902.html