码迷,mamicode.com
首页 > 编程语言 > 详细

spark JavaDirectKafkaWordCount 例子分析

时间:2016-09-21 10:10:32      阅读:665      评论:0      收藏:0      [点我收藏+]

标签:

spark  JavaDirectKafkaWordCount 例子分析:

1、

KafkaUtils.createDirectStream(
jssc,
String.class,
String.class,
StringDecoder.class,
StringDecoder.class,
kafkaParams,
topicsSet
);
后面参数意思: 源码是这样

 @param ssc StreamingContext object
* @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">
* configuration parameters</a>. Requires "metadata.broker.list" or "bootstrap.servers"
* to be set with Kafka broker(s) (NOT zookeeper servers) specified in
* host1:port1,host2:port2 form.
* @param fromOffsets Per-topic/partition Kafka offsets defining the (inclusive)
* starting point of the stream
* @param messageHandler Function for translating each message and metadata into the desired type
* @tparam K type of Kafka message key
* @tparam V type of Kafka message value
* @tparam KD type of Kafka message key decoder
* @tparam VD type of Kafka message value decoder
* @tparam R type returned by messageHandler
* @return DStream of R
*/
def createDirectStream[
K: ClassTag,
V: ClassTag,
KD <: Decoder[K]: ClassTag,
VD <: Decoder[V]: ClassTag,
R: ClassTag] (
ssc: StreamingContext,
kafkaParams: Map[String, String],
fromOffsets: Map[TopicAndPartition, Long],
messageHandler: MessageAndMetadata[K, V] => R
): InputDStream[R] = {
val cleanedHandler = ssc.sc.clean(messageHandler)
new DirectKafkaInputDStream[K, V, KD, VD, R](
ssc, kafkaParams, fromOffsets, cleanedHandler)
}

2、数据在输入到输出经历几个阶段:先map返回JavaDStream<String>类型

                 然后flatMap 返回JavaDStream<String>类型

                 在 然后mapToPair返回JavaPairDStream<String, Integer>

                 最后reduceByKey 获得两数之和  



 

 

完整例子请看尾部完整代码



import java.util.HashMap;
import java.util.HashSet;
import java.util.Arrays;
import java.util.regex.Pattern;

import scala.Tuple2;

import com.google.common.collect.Lists;
import kafka.serializer.StringDecoder;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.api.java.*;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.apache.spark.streaming.Durations;

/**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: JavaDirectKafkaWordCount <brokers> <topics>
* <brokers> is a list of one or more Kafka brokers
* <topics> is a list of one or more kafka topics to consume from
*
* Example:
* $ bin/run-example streaming.JavaDirectKafkaWordCount broker1-host:port,broker2-host:port topic1,topic2
*/

public final class JavaDirectKafkaWordCount {
private static final Pattern SPACE = Pattern.compile(" ");

public static void main(String[] args) {
if (args.length < 2) {
System.err.println("Usage: JavaDirectKafkaWordCount <brokers> <topics>\n" +
" <brokers> is a list of one or more Kafka brokers\n" +
" <topics> is a list of one or more kafka topics to consume from\n\n");
System.exit(1);
}

StreamingExamples.setStreamingLogLevels();

String brokers = args[0];
String topics = args[1];

// Create context with a 2 seconds batch interval
SparkConf sparkConf = new SparkConf().setAppName("JavaDirectKafkaWordCount");
JavaStreamingContext jssc;
jssc = new (sparkConf, Durations.seconds(2));

HashSet<String> topicsSet = new HashSet<String>(Arrays.asList(topics.split(",")));
HashMap<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put("metadata.broker.list", brokers);

// Create direct kafka stream with brokers and topics
JavaPairInputDStream<String, String> messages = KafkaUtils.createDirectStream(
jssc,
String.class,
String.class,
StringDecoder.class,
StringDecoder.class,
kafkaParams,
topicsSet
);

// Get the lines, split them into words, count the words and print
JavaDStream<String> lines = messages.map(new Function<Tuple2<String, String>, String>() {
@Override
public String call(Tuple2<String, String> tuple2) {
return tuple2._2();
}
});
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String x) {
return Lists.newArrayList(SPACE.split(x));
}
});
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}).reduceByKey(
new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
wordCounts.print();

// Start the computation
jssc.start();
jssc.awaitTermination();
}
}

spark JavaDirectKafkaWordCount 例子分析

标签:

原文地址:http://www.cnblogs.com/ptbx/p/5891565.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!