码迷,mamicode.com
首页 > 编程语言 > 详细

DataFrame排序问题

时间:2016-09-27 17:44:23      阅读:442      评论:0      收藏:0      [点我收藏+]

标签:

1 from pandas import DataFrame
2 df = DataFrame(dictList)
3 df = df.sort_values(by=‘internalReturn‘, ascending=False)

现在正在写一个122个品种的实时风险分析的程序,能够提取最佳的交易品种以及他们的持仓周期等信息。由于指标比较多,所以决定用DataFrame结构。

我使用以下代码生成新的df结构时

1 df = df.sort_values(by=internalReturn, ascending=False, inplace=True)

结果为空。

替代方法:

df2=df.nlargest(10, columns=internalReturn)

也可以使用

df2=df.head(10)

相应的,也有:

1 df2=df.tail(10)
2 df2=df.nsmallest(10,columns=internalReturn)

由于在实际操作中并不会频繁变换主要交易品种,所以短期的排名变化不会影响交易品种。

spreads实际上就是沉没成本。波动点差比较低的品种只有两种情况:几乎没有波动或者点差过大。

举两个例子:

泰铢的15分钟是20点,在forex中不算低波动,但是泰铢的点差是11点,换句话说即使方向一致,15分钟收益率依然有50%以上的概率为负。

铂金的15分钟收益率超过100%,是metal中排名第一,但是点差占16.5%

从长期看,波动点差比是一个稳定的数值。一些突发事件可能显著改变波动点差比,如今年土耳其政变的土耳其里拉,英国退欧的英镑,但是拉长时间周期后,就可以得到一个稳定的数值。

监控波动点差比的意义在于 筛选短线交易品种,调整品种池。

DataFrame排序问题

标签:

原文地址:http://www.cnblogs.com/kaezah/p/5913489.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!